scholarly journals Internalization of Phospholipids from the Plasma Membrane of Human Osteoblasts Depends on the Lipid Head Group

1999 ◽  
Vol 14 (5) ◽  
pp. 690-699 ◽  
Author(s):  
Jeanette Libera ◽  
Thomas Pomorski ◽  
Oliviera Josimović-Alasević ◽  
Karl-Gerd Fritsch ◽  
Andreas Herrmann
2020 ◽  
Vol 219 (3) ◽  
Author(s):  
Kangmin He ◽  
Eli Song ◽  
Srigokul Upadhyayula ◽  
Song Dang ◽  
Raphael Gaudin ◽  
...  

Clathrin-coated vesicles lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 “uncoating ATPase.” The J- and PTEN-like domain–containing proteins, auxilin 1 (Aux1) and auxilin 2 (GAK), recruit Hsc70. The PTEN-like domain has no phosphatase activity, but it can recognize phosphatidylinositol phosphate head groups. Aux1 and GAK appear on coated vesicles in successive transient bursts, immediately after dynamin-mediated membrane scission has released the vesicle from the plasma membrane. These bursts contain a very small number of auxilins, and even four to six molecules are sufficient to mediate uncoating. In contrast, we could not detect auxilins in abortive pits or at any time during coated pit assembly. We previously showed that clathrin-coated vesicles have a dynamic phosphoinositide landscape, and we have proposed that lipid head group recognition might determine the timing of Aux1 and GAK appearance. The differential recruitment of Aux1 and GAK correlates with temporal variations in phosphoinositide composition, consistent with a lipid-switch timing mechanism.


2019 ◽  
Author(s):  
Kangmin He ◽  
Eli Song ◽  
Srigokul Upadhyayula ◽  
Song Dang ◽  
Raphael Gaudin ◽  
...  

ABSTRACTClathrin coated vesicles formed at the plasma membrane lose their clathrin lattice within seconds of pinching off, through the action of the Hsc70 “uncoating ATPase”. The J-domain containing proteins, auxilin1 (Aux1) and auxilin2/cyclin-G dependent kinase (GAK), recruit Hsc70. Aux1 and GAK are closely related homologs, each with a phosphatase- and tensin-like (PTEN-like) domain, a clathrin-binding region, and a C-terminal J-domain; GAK has an additional, N-terminal Ser/Thr kinase domain. The PTEN-like domain has no phosphatase activity, but it can recognize phosphatidylinositol phosphate head groups. Aux1 and GAK appear on coated vesicles in successive transient bursts, immediately after dynamin mediated membrane scission has released the vesicle from the plasma membrane. We show here that these bursts represent recruitment of a very small number of auxilins such that even 4-6 molecules are sufficient to mediate uncoating. In contrast, we could not detect auxilins in abortive pits or at any time during coated-pit assembly. We have also shown previously that clathrin coated vesicles have a dynamic phosphoinositide landscape, and we have proposed that lipid head group recognition might determine the timing of Aux1 and GAK appearance. We now show that differential recruitment of Aux1 and GAK correlates with temporal variations in phosphoinositide composition, consistent with a lipid-switch timing mechanism.


1999 ◽  
Vol 112 (12) ◽  
pp. 1957-1965 ◽  
Author(s):  
K. Venkateswarlu ◽  
F. Gunn-Moore ◽  
J.M. Tavare ◽  
P.J. Cullen

ADP-ribosylation factors (ARFs) are small GTP-binding proteins that function as regulators of eukaryotic vesicle trafficking. Cytohesin-1 is a member of a family of ARF guanine nucleotide-exchange factors that contain a C-terminal pleckstrin homology (PH) domain which has been proposed to bind the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate (PIP3). Here we demonstrate that in vitro, recombinant cytohesin-1 binds, via its PH domain, the inositol head group of PIP3, inositol 1,3,4, 5-tetrakisphosphate (IP4), with an affinity greater than 200-fold higher than the inositol head group of either phosphatidylinositol 4, 5-bisphosphate or phosphatidylinositol 3,4-bisphosphate. Moreover, addition of glycerol or diacetylglycerol to the 1-phosphate of IP4 does not alter the ability to interact with cytohesin-1, data which is entirely consistent with cytohesin-1 functioning as a putative PIP3 receptor. To address whether cytohesin-1 binds PIP3 in vivo, we have expressed a chimera of green fluorescent protein (GFP) fused to the N terminus of cytohesin-1 in PC12 cells. Using laser scanning confocal microscopy we demonstrate that either EGF- or NGF-stimulation of transiently transfected PC12 cells results in a rapid translocation of GFP-cytohesin-1 from the cytosol to the plasma membrane. This translocation is dependent on the cytohesin-1 PH domain and occurs with a time course that parallels the rate of plasma membrane PIP3 production. Furthermore, the translocation requires the ability of either agonist to activate PI 3-kinase, since it is inhibited by wortmannin (100 nM), LY294002 (50 microM) and by coexpression with a dominant negative p85. This data therefore suggests that in vivo cytohesin-1 can interact with PIP3 via its PH domain.


2016 ◽  
Vol 18 (38) ◽  
pp. 26998-26998
Author(s):  
Sai J. Ganesan ◽  
Hongcheng Xu ◽  
Silvina Matysiak

Correction for ‘Effect of lipid head group interactions on membrane properties and membrane-induced cationic β-hairpin folding’ by Sai J. Ganesan et al., Phys. Chem. Chem. Phys., 2016, 18, 17836–17850.


2011 ◽  
Vol 100 (3) ◽  
pp. 638a-639a ◽  
Author(s):  
Jacques P.F. Doux ◽  
Benjamin A. Hall ◽  
J. Antoinette Killian

1998 ◽  
Vol 53 (1-2) ◽  
pp. 101-106 ◽  
Author(s):  
H. Kleszczyńska ◽  
J. Łuczyński ◽  
S. Witek ◽  
S. Przestalski

Abstract The effect of new lysosomotropic compounds on red blood cell hemolysis and erythrocyte membrane fluidity has been investigated. In earlier studies it was shown that the compounds inhibit the growth of yeast and plasma membrane H+-ATPase activity. The study was per­ formed with eight aminoethyl esters of lauric acid variously substituted at nitrogen atom. Esters of dodecanoic acid were chosen for study because at that chain length dimethylaminoethyl esters showed maximum activity. The hemolytic activity of the substances studied exhib­its diversified activity in their interaction with the erythrocyte membrane: they differ in hemolytic activity and affect membrane fluidity differently. Erythrocyte membrane fluidity changes under the effect of those compounds which possess highest hemolytic activity. The hemolytic activity of the aminoesters investigated was found to follow a sequence that de­pended on basicity (i.e. ability of the protonated form formation) of the compound and its polar head group size. The most active are the compounds that possess not more than four carbon atoms substituted at nitrogen and highest pKa value.


2021 ◽  
Vol 28 (10) ◽  
pp. 825-834
Author(s):  
Takaharu Sakuragi ◽  
Ryuta Kanai ◽  
Akihisa Tsutsumi ◽  
Hirotaka Narita ◽  
Eriko Onishi ◽  
...  

AbstractXkr8–Basigin is a plasma membrane phospholipid scramblase activated by kinases or caspases. We combined cryo-EM and X-ray crystallography to investigate its structure at an overall resolution of 3.8 Å. Its membrane-spanning region carrying 22 charged amino acids adopts a cuboid-like structure stabilized by salt bridges between hydrophilic residues in transmembrane helices. Phosphatidylcholine binding was observed in a hydrophobic cleft on the surface exposed to the outer leaflet of the plasma membrane. Six charged residues placed from top to bottom inside the molecule were essential for scrambling phospholipids in inward and outward directions, apparently providing a pathway for their translocation. A tryptophan residue was present between the head group of phosphatidylcholine and the extracellular end of the path. Its mutation to alanine made the Xkr8–Basigin complex constitutively active, indicating that it plays a vital role in regulating its scramblase activity. The structure of Xkr8–Basigin provides insights into the molecular mechanisms underlying phospholipid scrambling.


1991 ◽  
Vol 41 (2) ◽  
pp. 175-183 ◽  
Author(s):  
Kimiko Makino ◽  
Takeshi Yamada ◽  
Mariko Kimura ◽  
Takashi Oka ◽  
Hiroyuki Ohshima ◽  
...  

1994 ◽  
Vol 242 (1-2) ◽  
pp. 112-117 ◽  
Author(s):  
Mathias Lösche ◽  
Christian Erdelen ◽  
Elmar Rump ◽  
Helmut Ringsdorf ◽  
Kristian Kjaer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document