Apatite-fission-track geochronology and its tectonic correlation in the Dabieshan orogen, central China

2005 ◽  
Vol 48 (4) ◽  
pp. 506 ◽  
Author(s):  
Changhai XU
2021 ◽  
Vol 9 ◽  
Author(s):  
Tao Tian ◽  
Peng Yang ◽  
Jianming Yao ◽  
Zhonghui Duan ◽  
Zhanli Ren ◽  
...  

The Micangshan-Dabashan tectonic belt, located in the southern Qinling-Dabie Orogen near the northeastern Tibetan Plateau, is a crucial area for understanding the processes and mechanisms of orogenesis. Previous studies have been focused on the cooling process via thermochronology and the mechanism and process of basement uplift have been investigated. However, the coupling process of basement exhumation and sedimentary cap cooling is unclear. The tectono-thermal history constrained by the detrital apatite fission track (AFT) results could provide valuable information for understanding crustal evolution and the coupling process. In this study, we provided new detrital AFT thermochronology results from the Micangshan-Dabashan tectonic belt and obtained nine high-quality tectono-thermal models revealing the Meso-Cenozoic cooling histories. The AFT ages and lengths suggest that the cooling events in the Micangshan area were gradual from north (N) to south (S) and different uplift occurred on both sides of Micangshan massif. The cooling in Dabashan tectonic zone was gradual from northeast (NS) to southwest (SW). The thermal histories show that a relatively rapid cooling since ca. 160 Ma occurred in the Micangshan-Dabashan tectonic belt, which was a response to the event of Qinling orogenic belt entered the intracontinental orogenic deformation. This cooling event may relate to the northeastward dextral compression of the Yangtze Block. The sedimentary cap of Cambriano-Ordovician strata responded positively to this rapid cooling event and entered the PAZ since ca. 63 Ma. The deep buried samples may be limited affected by climate and water erosion and the accelerated cooling was not obvious in the Late Cenozoic. Collectively, the cooling processes of basement and sedimentary cap in Micangshan-Dabashan tectonic belt were inconsistent. The uplift of the sedimentary area is not completely consistent with that of the basement under thrust and nappe action. The rigid basement was not always continuous and rapidly uplifted or mainly showed as lateral migration in a certain stage because of the different intensities and modes of thrust and nappe action, and the plastic sedimentary strata rapidly uplifted due to intense folding deformation.


Minerals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 604
Author(s):  
Evgeny V. Vetrov ◽  
Johan De Grave ◽  
Natalia I. Vetrova ◽  
Fedor I. Zhimulev ◽  
Simon Nachtergaele ◽  
...  

The West Siberian Basin (WSB) is one of the largest intracratonic Meso-Cenozoic basins in the world. Its evolution has been studied over the recent decades; however, some fundamental questions regarding the tectonic evolution of the WSB remain unresolved or unconfirmed by analytical data. A complete understanding of the evolution of the WSB during the Mesozoic and Cenozoic eras requires insights into the cooling history of the basement rocks as determined by low-temperature thermochronometry. We presented an apatite fission track (AFT) thermochronology study on the exposed parts of the WSB basement in order to distinguish tectonic activation episodes in an absolute timeframe. AFT dating of thirteen basement samples mainly yielded Cretaceous cooling ages and mean track lengths varied between 12.8 and 14.5 μm. Thermal history modeling based on the AFT data demonstrates several Mesozoic and Cenozoic intracontinental tectonic reactivation episodes affected the WSB basement. We interpreted the episodes of tectonic activity accompanied by the WSB basement exhumation as a far-field effect from tectonic processes acting on the southern and eastern boundaries of Eurasia during the Mesozoic–Cenozoic eras.


Clay Minerals ◽  
2008 ◽  
Vol 43 (2) ◽  
pp. 213-233 ◽  
Author(s):  
J. De Bona ◽  
N. Dani ◽  
J. M. Ketzer ◽  
L. F. De Ros

AbstractFluvial and aeolian sandstones of the Sergi Formation are the most important reservoirs of the Recôncavo Basin, Brazil. Optical and scanning electron microscopy, X-ray diffraction and infrared spectroscopy revealed the occurrence of dickite, a clay mineral indicative of deep burial conditions (T >100ºC), in the shallow Buracica (630–870 m) and Água Grande (1300–1530 m) oilfields. Vermicular dickite replaces K-feldspar and plagioclase grains, and fills intra- and inter-granular pores. Its vermicular habit is a product of pseudomorphic kaolinite transformation during burial. The presence of dickite is in accordance with the intensity of compaction, post-compactional quartz cementation and δ18O values of calcite cements (T up to 109ºC). These petrological features of deep burial, as well as apatite fission-track analyses, indicate that uplift and erosion of at least 1 km, and probably >1500 m, affected the central part of the Recôncavo Basin and possibly the entire region. This uplift has not been detected previously by conventional structural and stratigraphic models.


2021 ◽  
Author(s):  
Murat Tamer ◽  
Ling Chung ◽  
Richard Ketcham ◽  
Andrew Gleadow

Sign in / Sign up

Export Citation Format

Share Document