The optical response of Co-plated butterfly wing scales controlled by a magnetic field

2014 ◽  
Vol 59 (25) ◽  
pp. 2499-2504
Author(s):  
JiaJun GU ◽  
JianJun CHEN ◽  
Di ZHANG ◽  
Lin YANG
Nanoscale ◽  
2014 ◽  
Vol 6 (11) ◽  
pp. 6133-6140 ◽  
Author(s):  
Wenhong Peng ◽  
Shenmin Zhu ◽  
Wang Zhang ◽  
Qingqing Yang ◽  
Di Zhang ◽  
...  

A magnetite film with photonic structures, which possess spatial optical anisotropy properties and can be tuned by an external magnetic field, has been successfully fabricated by a simple sol–gel process.


Small ◽  
2015 ◽  
Vol 12 (6) ◽  
pp. 713-720 ◽  
Author(s):  
Zhiwu Han ◽  
Zhengzhi Mu ◽  
Bo Li ◽  
Shichao Niu ◽  
Junqiu Zhang ◽  
...  

2014 ◽  
Vol 39 ◽  
pp. 221-226 ◽  
Author(s):  
K. Kertész ◽  
G. Piszter ◽  
E. Jakab ◽  
Zs. Bálint ◽  
Z. Vértesy ◽  
...  

2007 ◽  
Vol 4 (1) ◽  
pp. 47-52 ◽  
Author(s):  
Li-yan Wu ◽  
Zhi-wu Han ◽  
Zhao-mei Qiu ◽  
Hui-ying Guan ◽  
Lu-quan Ren

Biomimetics ◽  
2020 ◽  
Vol 5 (1) ◽  
pp. 5
Author(s):  
Sigrid Zobl ◽  
Bodo D. Wilts ◽  
Willi Salvenmoser ◽  
Peter Pölt ◽  
Ille C. Gebeshuber ◽  
...  

The photonic structures of butterfly wing scales are widely known to cause angle-dependent colours by light interference with nanostructures present in the wing scales. Here, we quantify the relevance of the horizontal alignment of the butterfly wing scales on the wing. The orientation-dependent reflection was measured at four different azimuth angles, with a step size of 90°, for ten samples—two of different areas of the same species—of eight butterfly species of three subfamilies at constant angles of illumination and observation. For the observed species with varying optical structures, the wing typically exhibits higher orientation-dependent reflections than the individual scale. We find that the measured anisotropy is caused by the commonly observed grating structures that can be found on all butterfly wing scales, rather than the local photonic structures. Our results show that the technique employed here can be used to quickly evaluate the orientation-dependence of the reflection and hence provide important input for bio-inspired applications, e.g., to identify whether the respective structure is suitable as a template for nano-imprinting techniques.


2020 ◽  
Vol 92 (2) ◽  
pp. 223-232
Author(s):  
Zhen Luo ◽  
Zhaoyue Weng ◽  
Qingchen Shen ◽  
Shun An ◽  
Jiaqing He ◽  
...  

AbstractThis work explores an alternative vapor sensing mechanism through analyzing dynamic desorption process from butterfly wings for the differentiation of both individual and mixed vapors quantitatively. Morpho butterfly wings have been used in differentiating individual vapors, but it is challenging to use them for the differentiation of mixed vapor quantitatively. This paper demonstrates the use of Morpho butterfly wings for the sensitive and selective detection of closely related vapors in mixtures. Principal components analysis (PCA) is used to process the reflectance spectra of the wing scales during dynamic desorption of different vapors. With the desorption-based detection mechanism, individual vapors with different concentrations and mixed vapors with different mixing ratios can be differentiated using the butterfly wing based sensors. Both the original butterfly wings and butterfly wings with surface modification show the capability in distinguishing vapors in mixtures, which may offer a guideline for further improving selectivity and sensitivity of bioinspired sensors.


2013 ◽  
Vol 1509 ◽  
Author(s):  
Danhao Ma ◽  
Dustin T. Hess ◽  
Pralav P Shetty ◽  
Kofi W. Adu ◽  
Richard Bell ◽  
...  

AbstractWe report a systematic study of polarization and magnetic field effects on the optical response of Fe3O4-silicone elastomer composite. The Fe3O4 particles were aligned in a silicone elastomer matrix with an external static magnetic field. Films of composites containing 5wt% of 20nm ≤ d ≤ 30nm Fe3O4 particles aligned in- and out-of-plane in the elastomer host were prepared. The optical spectra of the films were measured with the Perkin-Elmer Lambda 950 UV/vis/NIR spectrometer. We observed a systematic redshift in the optical response of the outof-plane composite films with increasing static magnetic field strength, which saturated near 600 Gauss. We obtained a maximum redshift of ∼46 nm at 600 Gauss. The observed redshift in the optical response of the out-of-plane composite film is attributed to the effect of the magnetic field. This facilitated the formation of the highly aligned particles that induced strong electric dipole in the aligned particles. Interestingly, there were no observable shifts with increasing magnetic field strength in the in-plane films, suggesting that the orientation (polarization) of the magnetic dipole and the induced electric dipole play a crucial role in the optical response.


Sign in / Sign up

Export Citation Format

Share Document