scholarly journals Gut microbiota and probiotics intervention: A new therapeutic target for management of chronic kidney disease

2018 ◽  
Vol 64 (3) ◽  
pp. 291-297
Author(s):  
Han Zhu ◽  
Ying Yao
2018 ◽  
Vol 130 ◽  
pp. 152-163 ◽  
Author(s):  
Marinaldo Pacífico Cavalcanti Neto ◽  
Jailane de Souza Aquino ◽  
Larissa de Fátima Romão da Silva ◽  
Ruanniere de Oliveira Silva ◽  
Keyth Sulamitta de Lima Guimarães ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 114
Author(s):  
Chih-Yu Yang ◽  
Ting-Wen Chen ◽  
Wan-Lun Lu ◽  
Shih-Shin Liang ◽  
Hsien-Da Huang ◽  
...  

Chronic kidney disease (CKD) has long been known to cause significant digestive tract pathology. Of note, indoxyl sulfate is a gut microbe-derived uremic toxin that accumulates in CKD patients. Nevertheless, the relationship between gut microbiota, fecal indole content, and blood indoxyl sulfate level remains unknown. In our study, we established an adenine-induced CKD rat model, which recapitulates human CKD-related gut dysbiosis. Synbiotic treatment in CKD rats showed a significant reduction in both the indole-producing bacterium Clostridium and fecal indole amount. Furthermore, gut microbiota diversity was reduced in CKD rats but was restored after synbiotic treatment. Intriguingly, in our end-stage kidney disease (ESKD) patients, the abundance of indole-producing bacteria, Bacteroides, Prevotella, and Clostridium, is similar to that of healthy controls. Consistently, the fecal indole tends to be higher in the ESKD patients, but the difference did not achieve statistical significance. However, the blood level of indoxyl sulfate was significantly higher than that of healthy controls, implicating that under an equivalent indole production rate, the impaired renal excretion contributes to the accumulation of this notorious uremic toxin. On the other hand, we did identify two short-chain fatty acid-producing bacteria, Faecalibacterium and Roseburia, were reduced in ESKD patients as compared to the healthy controls. This may contribute to gut dysbiosis. We also identified that three genera Fusobacterium, Shewanella, and Erwinia, in the ESKD patients but not in the healthy controls. Building up gut symbiosis to treat CKD is a novel concept, but once proved effective, it will provide an additional treatment strategy for CKD patients.


Toxins ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 472
Author(s):  
Elisabetta Margiotta ◽  
Lara Caldiroli ◽  
Maria Luisa Callegari ◽  
Francesco Miragoli ◽  
Francesca Zanoni ◽  
...  

Background: Sarcopenia is a prevalent condition in chronic kidney disease (CKD). We determined gut microbiota (gMB) composition in CKD patients with or without sarcopenia. Furthermore, we investigated whether in these patients, there was any association between gMB, uremic toxins, inflammation and oxidative stress. Methods: We analyzed gMB composition, uremic toxins (indoxyl sulphate and p-cresyl sulphate), inflammatory cytokines (interleukin 10, tumor necrosis factor α, interleukin 6, interleukin 17, interleukin 12 p70, monocyte chemoattractant protein-1 and fetuin-A) and oxidative stress (malondialdehyde) of 64 elderly CKD patients (10 < eGFR < 45 mL/min/1.73 m2, not on dialysis) categorized as sarcopenic and not-sarcopenic. Sarcopenia was defined according to European Working Group on Sarcopenia in Older People 2 criteria. Results: Sarcopenic patients had a greater abundance of the Micrococcaceae and Verrucomicrobiaceae families and of Megasphaera, Rothia, Veillonella, Akkermansia and Coprobacillus genera. They had a lower abundance of the Gemellaceae and Veillonellaceae families and of Acidaminococcus and Gemella genera. GMB was associated with uremic toxins, inflammatory cytokines and MDA. However, uremic toxins, inflammatory cytokines and MDA were not different in sarcopenic compared with not-sarcopenic individuals, except for interleukin 10, which was higher in not-sarcopenic patients. Conclusions: In older CKD patients, gMB was different in sarcopenic than in not-sarcopenic ones. Several bacterial families and genera were associated with uremic toxins and inflammatory cytokines, although none of these latter substantially different in sarcopenic versus not-sarcopenic patients.


Toxins ◽  
2018 ◽  
Vol 10 (4) ◽  
pp. 155 ◽  
Author(s):  
Laetitia Koppe ◽  
Denis Fouque ◽  
Christophe Soulage

Author(s):  
Karla Thaís Resende Teixeira ◽  
Laís de Souza Gouveia Moreira ◽  
Natalia Alvarenga Borges ◽  
Isabela Brum ◽  
Bruna R. de Paiva ◽  
...  

2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
Mieke Steenbeke ◽  
Sophie Valkenburg ◽  
Wim Van Biesen ◽  
Joris Delanghe ◽  
Marijn Speeckaert ◽  
...  

Abstract Background and Aims Chronic kidney disease (CKD) is characterized by gut dysbiosis. We recently demonstrated a decrease of short-chain fatty acid (SCFA) producing bacterial species with the progression of CKD. Besides, levels of protein-bound uremic toxins (PBUTs) and post-translational modifications of protein are increased in CKD, both are risk factors for accelerated cardiovascular morbidity and mortality. The link between the gut-kidney axis and protein carbamylation is unclear. The aim of the study was to explore the relation between carbamylated albumin, estimated by the albumin symmetry factor, and plasma levels of PBUTs, fecal levels of SCFAs (ongoing), and the abundance of related gut microbiota in different stages of CKD (1-5). Method The study cohort includes 103 non-dialyzed CKD patients (stages 1-5). Serum proteins were detected by capillary electrophoresis and UV absorbance at 214 nm with the symmetry factor as a marker of albumin carbamylation [the lower the symmetry factor, the more carbamylated albumin]. The quantification of PBUTs and SCFAs in plasma and fecal samples, respectively, using validated UPLC methods. Results The Pearson correlation coefficient (r) shows a positive correlation between the albumin symmetry factor and the estimated glomerular filtration rate (eGFR) (r=0.3025; p=0.0019). The albumin symmetry factor correlates positively with the abundance of Butyricicoccus spp. (r= 0.3211; p=0.0009), Faecalibacterium prausnitzii (r=0.2765; p=0.0047) and Roseburia spp. (r=0.2527; p=0.0100) and negatively with the PBUTs, p-cresyl sulfate (pCS) (r=-0.2819; p=0.0039), p-cresyl glucuronide (pCG) (r=-0.2819; p=0.0039) and indoxyl sulfate (IxS) (r=-0.2650; p=0.0068). Conclusion The decreased abundance of SCFA producing gut bacteria with the progression of CKD can evoke unfavorable conditions in the gut. This can contribute to increased plasma levels of PBUTs potentially (indirectly) playing a role in albumin carbamylation. It will be further explored whether fecal levels of SCFAs are affected in parallel and could be potential targets to restore gut dysbiosis and uremia.


2021 ◽  
Author(s):  
Pedrum Mohammadi-Shemirani ◽  
Michael Chong ◽  
Nicolas Perrot ◽  
Marie Pigeyre ◽  
Gregory R. Steinberg ◽  
...  

Background: ATP-citrate lyase (ACLY) inhibition is a promising therapeutic target for dyslipidemia, atherosclerotic cardiovascular disease, non-alcoholic steatohepatitis, and metabolic syndrome. Genetic analysis of its role in chronic kidney disease (CKD) has not been performed. Methods: We constructed a genetic instrument by selecting variants associated with ACLY expression level in the expression quantitative trait loci genetics consortium (eQTLGen) that includes blood samples from 31,684 participants. In a two-sample Mendelian randomization analysis, we then evaluated the effect of genetically predicted ACLY expression on risk of CKD, estimated glomerular filtration rate (eGFR), and microalbuminuria using the CKD Genetics consortium (CKDGen), United Kingdom biobank, and the Finnish Genetics consortium (FinnGen) totaling 66,396 CKD cases and 958,517 controls. Results: ACLY is constitutively expressed in all cell types including in whole blood. The genetic instrument included 13 variants and explained 1.5% of variation in whole blood ACLY gene expression. A 34% reduction in genetically predicted ACLY expression was associated with a 0.04 mmol/L reduced low-density lipoprotein cholesterol (P = 3.4 x 10-4) and a 9% reduced risk of CKD (stage 3,4,5, dialysis or eGFR below 60 ml/min/1.73m2) (OR = 0.91, 95% C.I. 0.85-0.98, P = 0.008), but no association was observed with eGFR nor microalbuminuria. Conclusion: Mendelian Randomization analysis provides cautious optimism regarding the possibility of ACLY as a therapeutic target for CKD.


2020 ◽  
Vol 8 (6) ◽  
pp. 907 ◽  
Author(s):  
Ji Eun Kim ◽  
Hyo-Eun Kim ◽  
Ji In Park ◽  
Hyunjeong Cho ◽  
Min-Jung Kwak ◽  
...  

Chronic kidney disease (CKD)-associated uremia aggravates—and is aggravated by—gut dysbiosis. However, the correlation between CKD severity and gut microbiota and/or their uremic metabolites is unclear. We enrolled 103 CKD patients with stage 1 to 5 and 46 healthy controls. We analyzed patients’ gut microbiota by MiSeq system and measured the serum concentrations of four uremic metabolites (p-cresyl sulfate, indoxyl sulfate, p-cresyl glucuronide, and trimethylamine N-oxide) by liquid chromatography–tandem mass spectrometry. Serum concentrations of the uremic metabolites increased with kidney function deterioration. Gut microbial diversity did not differ among the examined patient and control groups. In moderate or higher stage CKD groups, Oscillibacter showed positive interactions with other microbiota, and the proportions of Oscillibacter were positively correlated with those of the uremic metabolites. The gut microbiota, particularly Oscillibacter, was predicted to contribute to pyruvate metabolism which increased with CKD progression. Relative abundance of Oscillibacter was significantly associated with both serum uremic metabolite levels and kidney function. Predicted functional analysis suggested that kidney-function-associated changes in the contribution of Oscillibacter to pyruvate metabolism in CKD may greatly affect the gut environment according to kidney function, resulting in dysbiosis concomitant with uremic toxin production. The gut microbiota could be associated with uremia progression in CKD. These results may provide basis for further metagenomics analysis of kidney diseases.


Sign in / Sign up

Export Citation Format

Share Document