Reliability of Laser Flash Thermal Diffusivity Measurements of the Thermal Barrier Coatings

2000 ◽  
Vol 9 (2) ◽  
pp. 210-214 ◽  
Author(s):  
H. Wang ◽  
R.B. Dinwiddie
2007 ◽  
Vol 11 (1) ◽  
pp. 137-156
Author(s):  
Nenad Milosevic

The paper presents an estimation procedure for the measurement of the thermal diffusivity of thermal barrier coatings deposited on thermal conductive substrates using the laser flash method when the thermal contact resistance between the coating and substrate is unknown. The procedure is based on the application of the optimal parameterization technique and Gauss minimization algorithm. It has been applied on the experimental data obtained by using two different samples, one made of PTFE (polytetrafluoroethylene) coating deposited on a stainless steel substrate and the other made of PVC (polyvinylchloride) deposited on a copper substrate. .


Author(s):  
K.S. Ravichandran ◽  
K. An ◽  
R. Taylor

Abstract Thermal conductivity is an important design parameter for thermal barrier coatings. Accurate thermal conductivity data is therefore required to ensure proper design and reliability of gas turbine blades. In the present research, thermal conductivities of Al2O3 and 8wt.% Y2O3 stabilized ZrO2 (8YSZ) coatings, made by air plasma spray, were determined from the measurements of thermal diffusivity and specific heat as a function of temperature. Thermal diffusivity was determined by the laser flash technique. Specific heat was determined by a Differential Scanning Calorimeter (DSC). Detailed analyses of the results indicate that the thermal conductivity is sensitive to coating density (porosity), interfaces between splats as well as the interface between the coating and the substrate. Additionally, thermal conductivity evaluations of these coatings were also influenced by the accuracy and relevance of the data on bulk monolithic materials. Further, analyses of sensitivity of the laser flash technique to variations in the coating and the substrate parameters, for the coatings evaluated in this study, were also performed. The results are discussed in the context of coating characteristics, reference conductivity data for dense materials and the sensitivity of the measurement method to coating parameters.


2013 ◽  
Vol 336 ◽  
pp. 91-96
Author(s):  
Grzegorz Moskal ◽  
Marta Mikuśkiewicz

The article presents results of microstructural investigations of plasma sprayed ceramic thermal barrier coatings obtained using Sm2Zr2O7+8YSZ and 8YSZ powders in 50/50, 25/75 and 75/25 proportions. The coatings thickness is evaluated and spherical, horizontal and vertical porosity is quantitatively and qualitatively characterized. The results obtained in this investigation were used for adjusted values of thermal conductivity calculations on the basis of results obtained from thermal diffusivity measurements at temperatures between 20 and 1100°C.


Author(s):  
Monica B. Silva ◽  
S. M. Guo ◽  
Patrick F. Mensah ◽  
Ravinder Diwan

Thermal barrier coatings (TBCs) are used in gas turbine engines to achieve a higher working temperature and thus lead to a better efficiency. Yttria-Stabilized-Zirconia (YSZ), a material with low thermal conductivity, is commonly used as the TBC top coat to provide the thermal barrier effect. In this paper, an analytical model is proposed to estimate the effective thermal conductivity of the TBCs based on the microstructures. This model includes the micro structure details, such as grain size, pore size, volume fraction of pores, and the interfacial resistance. To validate the model, two sets of TBC samples were fabricated and tested for thermal conductivity and associated microstructures. The first set of samples were disk shaped YSZ-Al2O3 samples fabricated using a pressing machine. The YSZ-Al2O3 powder mixture was 0, 1, 2, 3, 4 and 5 wt% Al2O3/YSZ powder ratio. The second set of samples were fabricated by Atmospheric Plasma Spray process for two different microstructure configurations, standard (STD) and vertically cracked (VC), at two different thicknesses, 400 and 700 urn respectively. A laser flash system was used to measure the thermal conductivity of the coatings. Experiments were performed over the temperature range from 100°C to 800°C. The porosity of the YSZ samples was measured using a mercury porosimetry analyzer, POREMASTER 33 system. A Scanning Electron Microscope (SEM) was used to study the microstructure of the samples. It is observed that the microstructure and the porosity are directly linked with the thermal conductivity values. The relationship of the properties to the real microstructure determines the validity of the proposed model.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Kevin Knopp ◽  
Amir Shandy ◽  
Achim Winterstein ◽  
Mariacarla Arduini ◽  
Frank Hemberger ◽  
...  

Zusammenfassung Die Effizienzsteigerung moderner Gasturbinen erfordert die stetige Anhebung der Betriebstemperatur. Die derzeitigen Brenngastemperaturen liegen mit über 1400 °C signifikant über der kritischen Temperatur der verwendeten Turbinenstähle. Zur Gewährleistung der Betriebssicherheit werden die Turbinenschaufeln neben Aktivkühlung durch Beschichtung mit thermischen Schutzschichten, sogenannten thermal barrier coatings (TBC), geschützt. Da es sich bei den TBC um Keramikschichten handelt, ist für die Erhöhung der Haftfestigkeit das Aufbringen eines Haftvermittlers (Verbindungsschicht) notwendig. Da die Eigenschaften dünner Schichten stark von den Eigenschaften des Bulkmaterials abweichen können und zudem von der Herstellungsmethode beeinflusst werden, ist eine Untersuchung der thermischen und infrarot-optischen Eigenschaften der tatsächlichen Schichtstrukturen unumgänglich, insbesondere im Hochtemperaturbereich. Hierfür wurden Proben des reinen Trägerstahls, des Trägerstahls mit Haftvermittlerschicht und des kompletten Schichtsystems aus Trägerstahl, Haftvermittlerschicht und Wärmedämmschicht verschiedener Dicken hergestellt und mittels Laser-Flash-Methode untersucht. Die Auswertung erfolgte dabei analytisch, ausgehend von der Trägerstahl-Einschichtprobe, über die Zweischicht- und Dreischichtsysteme. Vervollständigt wurden diese Untersuchungen durch infrarot-optische Charakterisierungen, mit denen sich die Wärmeausbreitung durch die Schichtsysteme beschreiben lässt. Zusammen mit den Laser-Flash Messungen erlaubt dies eine spätere Quantifizierung der einzelnen, bei Keramiken auftretenden, Wärmetransportmechanismen.


Sign in / Sign up

Export Citation Format

Share Document