Unet-based for Photoacoustic Imaging Artifact Removal

Author(s):  
Jianguang Deng ◽  
Jinchao Feng ◽  
Zhe Li ◽  
Zhonghua Sun ◽  
Kebin Jia
Author(s):  
William H. Massover

Each molecule of ferritin (d = 130Å) contains a core of iron surrounded by a 24-subunit protein shell. The amount of iron stored is variable and is present within the central cavity (d = 80Å) as a hydrated ferric oxide equivalent to the mineral, ferrihydrite. Many early ultrastructural studies of ferritin detected regular patterns of a multiparticulate substructure in the iron-rich core [e.g., 3,4], Each small particle was termed a “micelle“; a theory became widely accepted that a core consisted of up to six micelles positioned at the vertices of an octahedron. Other workers recognized that the apparent micelles were smaller or even disappeared if images were recorded closer to exact focus [e.g., 5]. In 1969, Haydon clearly established that the observed substructure was really an imaging artifact; each apparent micelle was only a dot in the underfocused phase contrast image of the supporting film superimposed on the amplitude image of the strongly scattering metal.


2020 ◽  
Vol 132 (6) ◽  
pp. 1952-1960 ◽  
Author(s):  
Seung-Bo Lee ◽  
Hakseung Kim ◽  
Young-Tak Kim ◽  
Frederick A. Zeiler ◽  
Peter Smielewski ◽  
...  

OBJECTIVEMonitoring intracranial and arterial blood pressure (ICP and ABP, respectively) provides crucial information regarding the neurological status of patients with traumatic brain injury (TBI). However, these signals are often heavily affected by artifacts, which may significantly reduce the reliability of the clinical determinations derived from the signals. The goal of this work was to eliminate signal artifacts from continuous ICP and ABP monitoring via deep learning techniques and to assess the changes in the prognostic capacities of clinical parameters after artifact elimination.METHODSThe first 24 hours of monitoring ICP and ABP in a total of 309 patients with TBI was retrospectively analyzed. An artifact elimination model for ICP and ABP was constructed via a stacked convolutional autoencoder (SCAE) and convolutional neural network (CNN) with 10-fold cross-validation tests. The prevalence and prognostic capacity of ICP- and ABP-related clinical events were compared before and after artifact elimination.RESULTSThe proposed SCAE-CNN model exhibited reliable accuracy in eliminating ABP and ICP artifacts (net prediction rates of 97% and 94%, respectively). The prevalence of ICP- and ABP-related clinical events (i.e., systemic hypotension, intracranial hypertension, cerebral hypoperfusion, and poor cerebrovascular reactivity) all decreased significantly after artifact removal.CONCLUSIONSThe SCAE-CNN model can be reliably used to eliminate artifacts, which significantly improves the reliability and efficacy of ICP- and ABP-derived clinical parameters for prognostic determinations after TBI.


Author(s):  
Lili Pan ◽  
Yu Ma ◽  
Xiaoai Wu ◽  
Huawei Cai ◽  
Feng Qin ◽  
...  

Abstract:: As a group of heterocyclic macrocycle organic natural compounds occurring universally in animal tissues and plants, porphyrins are composed of four modified pyrrole subunits. Porphyrin analogues/derivatives possess multiple biochemical properties because of their unique structures and have been extensively investigated in cancer treatment. Studies have shown that porphyrins and their derivatives have the ability to locate in tumor cells in a variety of human cancers, and these compounds not only exhibit potent therapeutic effects as photodynamic agents but also show promising properties in medicinal imaging, such as MRI, photoacoustic imaging, fluorescence imaging and PET/SPECT imaging. This paper reviews the recent reports of porphyrin derivatives as therapeutic agents used in tumor therapies, such as sonodynamic therapy, photodynamic therapy and radiotherapy, as well as imaging agents for multimodality tumor imaging. The limitations of porphyrin-based compounds in tumor treatments and future prospects are also summarized.


Sign in / Sign up

Export Citation Format

Share Document