We propose a class of graded coronagraphic “amplitude” image masks for a high throughput Lyot-type coronagraph that transmits light from an annular region around an extended source and suppresses light, with extremely high ratio, from elsewhere. The interior radius of the region is comparable with its exterior radius. The masks are designed using an idea inspired by approach due M. J. Kuchner and W. A. Traub (“band-limited” masks) and approach to optimal apodization by D. Slepian. One potential application of our masks is direct high-resolution imaging of exo-planets with the help of the Solar Gravitational Lens, where apparent radius of the “Einstein ring” image of a planet is of the order of an arc-second and is comparable with the apparent radius of the sun and solar corona.