Optical Inspection and Metrology in Semiconductor Manufacturing

Author(s):  
Mehdi Vaez-Iravani
Author(s):  
J. Temple Black

In ultramicrotomy, the two basic tool materials are glass and diamond. Glass because of its low cost and ease of manufacture of the knife itself is still widely used despite the superiority of diamond knives in many applications. Both kinds of knives produce plastic deformation in the microtomed section due to the nature of the cutting process and microscopic chips in the edge of the knife. Because glass has no well defined slip planes in its structure (it's an amorphous material), it is very strong and essentially never fails in compression. However, surface flaws produce stress concentrations which reduce the strength of glass to 10,000 to 20,000 psi from its theoretical or flaw free values of 1 to 2 million psi. While the microchips in the edge of the glass or diamond knife are generally too small to be observed in the SEM, the second common type of defect can be identified. This is the striations (also termed the check marks or feathers) which are always present over the entire edge of a glass knife regardless of whether or not they are visable under optical inspection. These steps in the cutting edge can be observed in the SEM by proper preparation of carefully broken knives and orientation of the knife, with respect to the scanning beam.


Author(s):  
J. P. Benedict ◽  
R. M. Anderson ◽  
S. J. Klepeis

Ion mills equipped with flood guns can perform two important functions in material analysis; they can either remove material or deposit material. The ion mill holder shown in Fig. 1 is used to remove material from the polished surface of a sample for further optical inspection or SEM ( Scanning Electron Microscopy ) analysis. The sample is attached to a pohshing stud type SEM mount and placed in the ion mill holder with the polished surface of the sample pointing straight up, as shown in Fig 2. As the holder is rotating in the ion mill, Argon ions from the flood gun are directed down at the top of the sample. The impact of Argon ions against the surface of the sample causes some of the surface material to leave the sample at a material dependent, nonuniform rate. As a result, the polished surface will begin to develop topography during milling as fast sputtering materials leave behind depressions in the polished surface.


Author(s):  
Devdas Shetty ◽  
Tom Eppes ◽  
Nikolay Nazaryan ◽  
Claudio Campana ◽  
Jun Kondo

Author(s):  
Franco Stellari ◽  
Peilin Song ◽  
James C. Tsang ◽  
Moyra K. McManus ◽  
Mark B. Ketchen

Abstract Hot-carrier luminescence emission is used to diagnose the cause of excess quiescence current, IDDQ, in a low power circuit implemented in CMOS 7SF technology. We found by optical inspection of the chip that the high IDDQ is related to the low threshold, Vt, device process and in particular to transistors with minimum channel length (0.18 μm). In this paper we will also show that it is possible to gain knowledge regarding the operating conditions of the IC from the analysis of optical emission due to leakage current, aside from simply locating defects and failures. In particular, we will show how it is possible to calculate the voltage drop across the circuit power grid from time-integrated acquisitions of leakage luminescence.


Author(s):  
Anqi Qiu ◽  
William Lowe ◽  
Mridul Arora

Abstract Nanoprobing systems have evolved to meet the challenges from recent innovations in the semiconductor manufacturing process. This is demonstrated through an exhibition of standard SRAM measurements on TSMC 7 nm FinFET technology. SEM based nanoprober is shown to meet or exceed the requirements for measuring 7nm technology and beyond. This paper discusses in detail of the best-known methods for nanoprobing on 7nm technology.


Author(s):  
Da-Yin Liao

Contemporary 300mm semiconductor manufacturing systems have highly automated and digitalized cyber-physical integration. They suffer from the profound problems of integrating large, centralized legacy systems with small islands of automation. With the recent advances in disruptive technologies, semiconductor manufacturing has faced dramatic pressures to reengineer its automation and computer integrated systems. This paper proposes a Distributed-Ledger, Edge-Computing Architecture (DLECA) for automation and computer integration in semiconductor manufacturing. Based on distributed ledger and edge computing technologies, DLECA establishes a decentralized software framework where manufacturing data are stored in distributed ledgers and processed locally by executing smart contracts at the edge nodes. We adopt an important topic of automation and computer integration for semiconductor research &development (R&D) operations as the study vehicle to illustrate the operational structure and functionality, applications, and feasibility of the proposed DLECA software framework.


Sign in / Sign up

Export Citation Format

Share Document