Remote sensing of cirrus cloud parameters using advanced very-high-resolution radiometer 37- and 109-μm channels

1993 ◽  
Vol 32 (12) ◽  
pp. 2171 ◽  
Author(s):  
S. C. Ou ◽  
K. N. Liou ◽  
W. M. Gooch ◽  
Y. Takano
2018 ◽  
Author(s):  
Benjamin R. Loveday ◽  
Timothy Smyth

Abstract. A consistently calibrated 40-year length dataset of visible channel remote sensing reflectance has been derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor global time-series. The dataset uses as its source the Pathfinder Atmospheres – Extended (PATMOS-x) v5.3 Climate Data Record (CDR) for top-of-atmosphere (TOA) visible channel reflectances. This paper describes the theoretical basis for the atmospheric correction procedure and its subsequent implementation, including the necessary ancillary data files used and quality flags applied, in order to determine remote sensing reflectance. The resulting dataset is produced at daily, and archived at monthly, resolution, on a 0.1° × 0.1° grid at https://doi.pangaea.de/10.1594/PANGAEA.892175. The primary aim of deriving this dataset is to highlight regions of the global ocean affected by highly reflective blooms of the coccolithophorid Emiliania Huxleyi over the past 40 years.


2021 ◽  
Vol 13 (22) ◽  
pp. 4674
Author(s):  
Yuqing Qin ◽  
Jie Su ◽  
Mingfeng Wang

The formation and distribution of melt ponds have an important influence on the Arctic climate. Therefore, it is necessary to obtain more accurate information on melt ponds on Arctic sea ice by remote sensing. The present large-scale melt pond products, especially the melt pond fraction (MPF), still require verification, and using very high resolution optical satellite remote sensing data is a good way to verify the large-scale retrieval of MPF products. Unlike most MPF algorithms using very high resolution data, the LinearPolar algorithm using Sentinel-2 data considers the albedo of melt ponds unfixed. In this paper, by selecting the best band combination, we applied this algorithm to Landsat 8 (L8) data. Moreover, Sentinel-2 data, as well as support vector machine (SVM) and iterative self-organizing data analysis technique (ISODATA) algorithms, are used as the comparison and verification data. The results show that the recognition accuracy of the LinearPolar algorithm for melt ponds is higher than that of previous algorithms. The overall accuracy and kappa coefficient results achieved by using the LinearPolar algorithm with L8 and Sentinel-2A (S2), the SVM algorithm, and the ISODATA algorithm are 95.38% and 0.88, 94.73% and 0.86, and 92.40%and 0.80, respectively, which are much higher than those of principal component analysis (PCA) and Markus algorithms. The mean MPF (10.0%) obtained from 80 cases from L8 data based on the LinearPolar algorithm is much closer to Sentinel-2 (10.9%) than the Markus (5.0%) and PCA algorithms (4.2%), with a mean MPF difference of only 0.9%, and the correlation coefficients of the two MPFs are as high as 0.95. The overall relative error of the LinearPolar algorithm is 53.5% and 46.4% lower than that of the Markus and PCA algorithms, respectively, and the root mean square error (RMSE) is 30.9% and 27.4% lower than that of the Markus and PCA algorithms, respectively. In the cases without obvious melt ponds, the relative error is reduced more than that of those with obvious melt ponds because the LinearPolar algorithm can identify 100% of dark melt ponds and relatively small melt ponds, and the latter contributes more to the reduction in the relative error of MPF retrieval. With a wider range and longer time series, the MPF from Landsat data are more efficient than those from Sentinel-2 for verifying large-scale MPF products or obtaining long-term monitoring of a fixed area.


2020 ◽  
Vol 12 (18) ◽  
pp. 2985 ◽  
Author(s):  
Yeneng Lin ◽  
Dongyun Xu ◽  
Nan Wang ◽  
Zhou Shi ◽  
Qiuxiao Chen

Automatic road extraction from very-high-resolution remote sensing images has become a popular topic in a wide range of fields. Convolutional neural networks are often used for this purpose. However, many network models do not achieve satisfactory extraction results because of the elongated nature and varying sizes of roads in images. To improve the accuracy of road extraction, this paper proposes a deep learning model based on the structure of Deeplab v3. It incorporates squeeze-and-excitation (SE) module to apply weights to different feature channels, and performs multi-scale upsampling to preserve and fuse shallow and deep information. To solve the problems associated with unbalanced road samples in images, different loss functions and backbone network modules are tested in the model’s training process. Compared with cross entropy, dice loss can improve the performance of the model during training and prediction. The SE module is superior to ResNext and ResNet in improving the integrity of the extracted roads. Experimental results obtained using the Massachusetts Roads Dataset show that the proposed model (Nested SE-Deeplab) improves F1-Score by 2.4% and Intersection over Union by 2.0% compared with FC-DenseNet. The proposed model also achieves better segmentation accuracy in road extraction compared with other mainstream deep-learning models including Deeplab v3, SegNet, and UNet.


Sign in / Sign up

Export Citation Format

Share Document