Stress optical fiber sensor using light coupling between two laterally fused multimode optical fibers

1998 ◽  
Vol 37 (16) ◽  
pp. 3417 ◽  
Author(s):  
Rachid Gafsi ◽  
Pierre Lecoy ◽  
Abdelrafik Malki
Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 574 ◽  
Author(s):  
Ismail Laarossi ◽  
María Quintela-Incera ◽  
José López-Higuera

An experimental study of a high temperature distributed optical fiber sensor based on Raman Optical-Time-Domain-Reflectometry (ROTDR) (up to 450 °C) and optical fibers with different coatings (polyimide/carbon, copper, aluminum and gold) is presented. Analysis of the distributed temperature sensor (DTS) measurements determined the most appropriate optical fiber to be used in high temperature industrial environment over long periods of time. To demonstrate the feasibility of this DTS for an industrial application, an optical cable was designed with the appropriate optical fiber and it was hermetically sealed to provide the required mechanical resistance and isolate the fiber from environmental degradations. This cable was used to measure temperature up to 360 °C of an industrial furnace during 7 days.


2018 ◽  
Vol 6 (46) ◽  
pp. 23894-23902 ◽  
Author(s):  
Vien Thi Tran ◽  
Won Jung Yoon ◽  
Jun-Ho Lee ◽  
Heongkyu Ju

Hg2+ detection sensitivity modulated by ssDNA sequence based binary numbers in bimetal-plasmonic optical fiber sensor that triggers ssDNA chemo-mechanical folding.


2021 ◽  
Vol 4 (2) ◽  
pp. 95
Author(s):  
Willy Hardiantho ◽  
Bidayatul Arminah ◽  
Arifin Arifin

Research has been carried out on the detection of mercury ions in water using plastic optical fibers. Detection of mercury ions is done by immersing the optical fiber sensor in the HgCl2 solution, where both ends of the sensor are connected to an LED and a phototransistor. LED as a light source will emit light along with the optical fiber which will be received by the phototransistor. The optical light received by the phototransistor is converted into an electric voltage and given a gain in the differential amplifier. The output voltage in the form of an analog signal is converted into a digital signal on the Arduino UNO so that it can be read on a computer. The optical fiber as a sensor is made in two configurations, namely U configuration and spiral spring configuration. The jacket and the fiber optic cladding are peeled off and then covered with chitosan. Each configuration will be given a variation of the curve to analyze the characteristics of the sensor. The curvature can cause a large power loss resulting in attenuation of the light intensity of the LED received by the phototransistor. Apart from the effect of indentation on optical fibers, the output voltage measurement results are also influenced by the level of HgCl2 concentration. The best measurement results for mercury ion sensors in water using plastic optical fibers are obtained in a spiral spring configuration with a chitosan cladding with a variation of 6 coils which has a sensitivity of 104.065 mV/ppm.


Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 12
Author(s):  
Marco César Prado Soares ◽  
Gabriel Perli ◽  
Matheus Kauê Gomes ◽  
Carolyne Brustolin Braga ◽  
Diego Luan Bertuzzi ◽  
...  

Abstract: Acetalated dextran (Ac-Dex) is a promising pH-sensitive biocompatible and biodegradable polymer for nanomedicine applications. In this work, Ac-Dex nanoparticles were synthesized by two different solvent evaporation methods, the single nanoemulsion and the double nanoemulsion. The Ac-Dex particles were characterized by scanning electron microscopy and the synthesis of highly homogeneous spherical particles was verified. Then, an optical fiber sensor based on quasi-elastic light scattering and comprised of only single-mode optical fibers and standard telecommunication devices showed sensitivity regarding the nanoparticles concentrations and was used for monitoring their degradation over 12 h under pH and temperature conditions of cancerous tissues. The results revealed a well-controlled degradation pattern, corroborating the suitability of the modified polymer to the release of active compounds in a sustainable manner and also demonstrating the applicability of the sensor for the in situ evaluation of the degradation.


2003 ◽  
Vol 804 ◽  
Author(s):  
Peter Geissinger ◽  
Barry J. Prince ◽  
Nadejda T. Kaltcheva ◽  
Maureen J. Prince ◽  
Alan W. Schwabacher

ABSTRACTOur recently introduced “Fiber-Optic Combinatorial Chemistry” technique combines combinatorial synthetic methods and optical fiber sensor technologies. Our one-dimensional combinatorial chemistry method allows for synthesis of large compound libraries in a linear format, for example in the cladding of optical fibers. Subjecting these libraries to assays that indicate positive identification of a library member by the binding of a fluorescent group, produces, in effect, an optical fiber sensor array. The location of a particular fluorescent region along the optical fiber can be determined through the optical time-of-flight technique, in which laser pulses propagating through the fiber core probe through their evanescent fields the fluorescent properties of the compounds located in the fiber cladding. It is a virtue of our combinatorial synthetic procedure that with the location of a compound on the fiber, its synthetic history is immediately known. We demonstrated that limitations on the spatial resolution of compounds along the fiber due to the excited state lifetimes of the fluorescent marker molecules can be overcome by the use of a second fiber - evanescently coupled to the first one - as an optical delay.The existing claddings of optical fibers severely restrict the range of chemistries for the synthesis of combinatorial libraries. Therefore, in order to make our method more generally applicable, the existing fiber cladding has to be replaced by a porous material that can act as solid support for reactions and at the same time preserve the optical guiding conditions of the fiber. In this contribution we discuss the requirements for such a replacement cladding and evaluate the general suitability of a functionalized candidate material.


Electronics ◽  
2021 ◽  
Vol 10 (13) ◽  
pp. 1604
Author(s):  
Mateusz Lakomski ◽  
Grzegorz Tosik ◽  
Przemyslaw Niedzielski

This paper examined the impact of optical fiber sensor design, and its integration to PVC (polyvinyl chloride) sheet piles, on deflection and strain monitoring. Optical fiber sensors based on Brillouin light backscattering (BLS) were prepared, as they can provide accurate strain and deflection measurement results. However, depending on the application of sheet piles systems, high deformation of PVC elements can be observed. Therefore, a fiber sensor design is not trivial. Three types of optical fiber coatings and their integration with PVC sheet piles were investigated. The effect on the value of compressive and tensile strain were analyzed. It has been experimentally proven that PVC sheet piles monitoring, based on BLS method, can be realized using optical fibers with 250 µm, 900 µm, and 3 mm coating diameter. Achieved results are in line with theory. Correction coefficient necessary for 900 µm and 3 mm coatings has been proposed and used to ensure proper strain measurement. It was found that 250 µm coating fiber based sensors can be utilized for PVC strain measurement under low deflection (>1.2 m beam length). On the other hand, sensors based on 3 mm coating fiber, due to a high level of linearity, can be applied to deflection distance measurement under high deformation.


2018 ◽  
Vol 56 (1) ◽  
pp. 94-99
Author(s):  
N. Sogabe ◽  
S. Nakaue ◽  
K. Chikiri ◽  
M. Hayakawa

2019 ◽  
Vol 5 (0) ◽  
pp. 19-00095-19-00095
Author(s):  
Shogo FUJIMOTO ◽  
Suguru UEMURA ◽  
Nobuyuki IMANISHI ◽  
Shuichiro HIRAI

Sign in / Sign up

Export Citation Format

Share Document