scholarly journals High photon conversion efficiency continuous wave lasing in an optically pumped I_2 hollow fiber gas laser in the visible region

2017 ◽  
Vol 56 (34) ◽  
pp. 9592 ◽  
Author(s):  
A. V. Vasudevan Nampoothiri ◽  
Farzin Beygi Azar Aghbolagh ◽  
Benoit Debord ◽  
Frederic Gerome ◽  
Fetah Benabid ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3184
Author(s):  
Jing Li ◽  
Yonggang He ◽  
Han Ye ◽  
Tiesheng Wu ◽  
Yumin Liu ◽  
...  

Metasurface-based beam splitters attracted huge interest for their superior properties compared with conventional ones made of bulk materials. The previously reported designs adopted discrete metasurfaces with the limitation of a discontinuous phase profile. In this paper, we propose a dual-band beam splitter, based on an anisotropic quasi-continuous metasurface, by exploring the optical responses under x-polarized (with an electric field parallel to the direction of the phase gradient) and y-polarized incidences. The adopted metasurface consists of two identical trapezoidal silicon antenna arrays with opposite spatial variations that lead to opposite phase gradients. The operational window of the proposed beam splitter falls in the infrared and visible region, respectively, for x- and y-polarized light, resulting from the different mechanisms. When x-polarized light is incident, the conversion efficiency and total transmission of the beam splitter remains higher than 90% and 0.74 within the wavelength range from 969 nm to 1054 nm, respectively. In this condition, each array can act as a beam splitter of unequal power. For y-polarized incidence, the maximum conversion efficiency and transmission reach approximately 100% and 0.85, while the values remain higher than 90% and 0.65 in the wavelength range from 687 nm to 710 nm, respectively. In this case, each array can be viewed as an effective beam deflector. We anticipate that it can play a key role in future integrated optical devices.


2012 ◽  
Author(s):  
Alexandre Laurain ◽  
Maik Scheller ◽  
Tsuei-Lian Wang ◽  
Jorg Hader ◽  
Jerome V. Moloney ◽  
...  

2006 ◽  
Vol 16 (02) ◽  
pp. 589-595 ◽  
Author(s):  
WEI SHI ◽  
YUJIE J. DING

By mixing two infrared radiations near 1 μm in a 47-mm-long GaSe crystal, we efficiently generated a monochromatic radiation which has frequency tunability from 4.51 THz down to 53 GHz. The highest peak power produced by us is 389 W at 203 μm (1.48 THz), which corresponds to the photon conversion efficiency of 19% (the power conversion efficiency of 0.098%).


2021 ◽  
Author(s):  
RA sharath ◽  
K Mani rahulan ◽  
N Angeline Little Flower ◽  
annie sujatha ◽  
g vinitha ◽  
...  

Abstract We report the third order nonlinear optical properties of Er3+-doped BaMoO4 nanostructures, and its dependence on Er dopant concentration. BaMoO4 nanostructures with different concentration of Er were synthesized by chemical precipitation method and were characterized by UV-Vis absorption, X-ray diffraction (XRD), transmission electron microscopy (TEM) and fluorescence measurements. The incorporation of Er ions shifted the absorption band of BaMoO4 towards higher wavelength and enhanced the light absorption in the visible region. XRD patterns showed that the powders crystallize in scheelite-type tetragonal structure. The nonlinear optical behavior of the nanostructures was investigated by a Z-scan technique at 532 nm using continuous wave Nd:YAG laser. Experimental results suggested that the addition of Er can considerably enhance the nonlinear absorption and refractive index coefficients of BaMoO4 which could be used as a potential for nonlinear optical device applications.


2021 ◽  
Author(s):  
Bojie Lou ◽  
Bing Ding ◽  
Zhangwang Miao ◽  
Pengfei Zhao ◽  
Haijuan Yu ◽  
...  

Abstract In this paper, a high brightness fiber-coupled module with a central wavelength of 520nm is simulated and designed by ray-tracing software ZEMAX, and then is experimentally implemented. Three 1-w continuous-wave green LD single emitters based on TO-9-package are successively collimated, spatially combined, and focused into an optical fiber with a core diameter of 50 μm and a numerical aperture of 0.22. The final output power of 1.53w is obtained, corresponding to an optical-optical conversion efficiency of 51% and an electro-optical conversion efficiency of 10%, and the tolerance between the simulation and the experimental result is analyzed and explained.


Sign in / Sign up

Export Citation Format

Share Document