scholarly journals High-speed multicolor structured illumination microscopy using a hexagonal single mode fiber array

2021 ◽  
Vol 12 (2) ◽  
pp. 1181
Author(s):  
Taylor A. Hinsdale ◽  
Sjoerd Stallinga ◽  
Bernd Rieger
2020 ◽  
Author(s):  
Taylor A. Hinsdale ◽  
Sjoerd Stallinga ◽  
Bernd Rieger

Structured Illumination Microscopy (SIM) is a widely used imaging technique that doubles the effective resolution of widefield microscopes. Most current implementations rely on diffractive elements, either gratings or programmable devices, to generate structured light patterns in the sample. These can be limited by spectral efficiency, speed, or both. Here we introduce the concept of fiber SIM which allows for camera frame rate limited pattern generation and manipulation over a broad wavelength range. Illumination patterns are generated by coupling laser beams into radially opposite pairs of fibers in a hexagonal single mode fiber array where the exit beams are relayed to the microscope objective’s back focal plane. The phase stepping and rotation of the illumination patterns are controlled by fast electro-optic devices. We achieved a rate of 111 SIM frames per second and imaged with excitation patterns generated by both 488 nm and 532 nm lasers.


2021 ◽  
Vol 11 (9) ◽  
pp. 4015
Author(s):  
Peter Hellwig ◽  
Klaus Schricker ◽  
Jean Pierre Bergmann

High processing speeds enormously enlarge the number of possible fields of application for laser processes. For example, material removal for sheet cutting using multiple passes or precise mass corrections can be achieved by means of spatter formation. For a better understanding of spatter formation at processing speeds of several hundred meters per minute, characterizations of the processing zone are required. For this purpose, a 400 W single-mode fiber laser was used in this study to process stainless steel AISI 304 (1.4301/X5CrNi18-10) with speeds of up to 600 m/min. A setup was developed that enabled a lateral high-speed observation of the processing zone by means of a glass plate flanking. This approach allowed for the measurement of several dimensions, such as the penetration depth, spatter formation, and especially, the inclination angle of the absorption front. It was shown that the loss of mass started to significantly increase when the absorption front was inclined at about 60°. In combination with precise weighings, metallographic examinations, and further external process observations, these findings provided an illustration of four empirical process models for different processing speeds.


2019 ◽  
Vol 0 (0) ◽  
Author(s):  
I. S. Amiri ◽  
P. G. Kuppusamy ◽  
Ahmed Nabih Zaki Rashed ◽  
P. Jayarajan ◽  
M. R. Thiyagupriyadharsan ◽  
...  

AbstractHigh-speed single-mode fiber-optic communication systems have been presented based on various hybrid multiplexing schemes. Refractive index step and silica-doped germanium percentage parameters are also preserved during their technological boundaries of attention. It is noticed that the connect design parameters suffer more nonlinearity with the number of connects. Two different propagation techniques have been used to investigate the transmitted data rates as a criterion to enhance system performance. The first technique is soliton propagation, where the control parameters lead to equilibrium between the pulse spreading due to dispersion and the pulse shrinking because of nonlinearity. The second technique is the MTDM technique where the parameters are adjusted to lead to minimum dispersion. Two cases are investigated: no dispersion cancellation and dispersion cancellation. The investigations are conducted over an enormous range of the set of control parameters. Thermal effects are considered through three basic quantities, namely the transmission data rates, the dispersion characteristics, and the spectral losses.


2020 ◽  
Vol 57 (24) ◽  
pp. 240001
Author(s):  
赵天宇 Zhao Tianyu ◽  
汪召军 Wang Zhaojun ◽  
冯坤 Feng Kun ◽  
梁言生 Liang Yansheng ◽  
何旻儒 He Minru ◽  
...  

Author(s):  
Mitsuharu Hirano ◽  
Akira Furuya ◽  
Hideki Machida ◽  
Koichi Koyama ◽  
Yasunori Murakami ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 143-148
Author(s):  
Adrien Descloux ◽  
Marcel Müller ◽  
Vytautas Navikas ◽  
Andreas Markwirth ◽  
Robin van den Eynde ◽  
...  

AbstractSuper-resolution structured illumination microscopy (SR-SIM) can be conducted at video-rate acquisition speeds when combined with high-speed spatial light modulators and sCMOS cameras, rendering it particularly suitable for live-cell imaging. If, however, three-dimensional (3D) information is desired, the sequential acquisition of vertical image stacks employed by current setups significantly slows down the acquisition process. In this work, we present a multiplane approach to SR-SIM that overcomes this slowdown via the simultaneous acquisition of multiple object planes, employing a recently introduced multiplane image splitting prism combined with high-speed SIM illumination. This strategy requires only the introduction of a single optical element and the addition of a second camera to acquire a laterally highly resolved 3D image stack. We demonstrate the performance of multiplane SIM by applying this instrument to imaging the dynamics of mitochondria in living COS-7 cells.


2015 ◽  
Vol 36 (2) ◽  
Author(s):  
Vikrant Sharma ◽  
Anurag Sharma ◽  
Dalvir Kaur

AbstractIn this paper, performance analysis of high-speed superdense wavelength-division-multiplexing (SDWDM) optical add–drop multiplexer (OADM) optical ring network for 6 nodes, 45 wavelengths having channel spacing of 0.2 nm on 300 km unidirectional nonlinear single-mode fiber ring of 10 Gbit/s has been reported. The performance optimization of the system by comparing different modulation formats has been reported on the basis of eye diagram and bit error rate (BER). It has been reported that CSRZ modulation format can achieve BER as better as e-24, which gives best performance. This paper also presents a study of performance degradation caused by the crosstalk and the effect of channel spacing on SWDM system.


2020 ◽  
Author(s):  
Mario Lachetta ◽  
Hauke Sandmeyer ◽  
Alice Sandmeyer ◽  
Jan Schulte am Esch ◽  
Thomas Huser ◽  
...  

SummaryDigital micromirror devices (DMDs) are spatial light modulators that employ the electro-mechanical movement of miniaturized mirrors to steer and thus modulate the light reflected of a mirror array. Their wide availability, low cost and high speed make them a popular choice both in consumer electronics such as video projectors, and scientific applications such as microscopy.High-end fluorescence microscopy systems typically employ laser light sources, which by their nature provide coherent excitation light. In super-resolution microscopy applications that use light modulation, most notably structured illumination microscopy (SIM), the coherent nature of the excitation light becomes a requirement to achieve optimal interference pattern contrast. The universal combination of DMDs and coherent light sources, especially when working with multiple different wavelengths, is unfortunately not straight forward. The substructure of the tilted micromirror array gives rise to a blazed grating, which has to be understood and which must be taken into account when designing a DMD-based illumination system.Here, we present a set of simulation frameworks that explore the use of DMDs in conjunction with coherent light sources, motivated by their application in SIM, but which are generalizable to other light patterning applications. This framework provides all the tools to explore and compute DMD-based diffraction effects and to simulate possible system alignment configurations computationally, which simplifies the system design process and provides guidance for setting up DMD-based microscopes.


Sign in / Sign up

Export Citation Format

Share Document