scholarly journals Real-time visualization and interaction with static and live optical coherence tomography volumes in immersive virtual reality

2018 ◽  
Vol 9 (6) ◽  
pp. 2825 ◽  
Author(s):  
Mark Draelos ◽  
Brenton Keller ◽  
Christian Viehland ◽  
Oscar M. Carrasco-Zevallos ◽  
Anthony Kuo ◽  
...  
PLoS ONE ◽  
2017 ◽  
Vol 12 (12) ◽  
pp. e0188729 ◽  
Author(s):  
Yuki Matsuhashi ◽  
Kei Sameshima ◽  
Yoshiki Yamamoto ◽  
Mitsuo Umezu ◽  
Kiyotaka Iwasaki

2020 ◽  
Vol 22 (Supplement_3) ◽  
pp. iii461-iii461
Author(s):  
Andrea Carai ◽  
Angela Mastronuzzi ◽  
Giovanna Stefania Colafati ◽  
Paul Voicu ◽  
Nicola Onorini ◽  
...  

Abstract Tridimensional (3D) rendering of volumetric neuroimaging is increasingly been used to assist surgical management of brain tumors. New technologies allowing immersive virtual reality (VR) visualization of obtained models offer the opportunity to appreciate neuroanatomical details and spatial relationship between the tumor and normal neuroanatomical structures to a level never seen before. We present our preliminary experience with the Surgical Theatre, a commercially available 3D VR system, in 60 consecutive neurosurgical oncology cases. 3D models were developed from volumetric CT scans and MR standard and advanced sequences. The system allows the loading of 6 different layers at the same time, with the possibility to modulate opacity and threshold in real time. Use of the 3D VR was used during preoperative planning allowing a better definition of surgical strategy. A tailored craniotomy and brain dissection can be simulated in advanced and precisely performed in the OR, connecting the system to intraoperative neuronavigation. Smaller blood vessels are generally not included in the 3D rendering, however, real-time intraoperative threshold modulation of the 3D model assisted in their identification improving surgical confidence and safety during the procedure. VR was also used offline, both before and after surgery, in the setting of case discussion within the neurosurgical team and during MDT discussion. Finally, 3D VR was used during informed consent, improving communication with families and young patients. 3D VR allows to tailor surgical strategies to the single patient, contributing to procedural safety and efficacy and to the global improvement of neurosurgical oncology care.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chenchen Ren ◽  
Xianxu Zeng ◽  
Zhongna Shi ◽  
Chunyan Wang ◽  
Huifen Wang ◽  
...  

AbstractIn this prospective study of an in-vivo cervical examination using optical coherence tomography (OCT), we evaluated the diagnostic value of non-invasive and real-time OCT in cervical precancerous lesions and cancer diagnosis, and determined the characteristics of OCT images. 733 patients from 5 Chinese hospitals were inspected with OCT and colposcopy-directed biopsy. The OCT images were compared with the histological sections to find out the characteristics of various categories of lesions. The OCT images were also interpreted by 3 investigators to make a 2-class classification, and the results were compared against the pathological results. Various structures of the cervical tissue were clearly observed in OCT images, which matched well with the corresponding histological sections. The OCT diagnosis results delivered a sensitivity of 87.0% (95% confidence interval, CI 82.2–90.7%), a specificity of 84.1% (95% CI 80.3–87.2%), and an overall accuracy of 85.1%. Both good consistency of OCT images and histological images and satisfactory diagnosis results were provided by OCT. Due to its features of non-invasion, real-time, and accuracy, OCT is valuable for the in-vivo evaluation of cervical lesions and has the potential to be one of the routine cervical diagnosis methods.


Sign in / Sign up

Export Citation Format

Share Document