Photonic Integrated Circuits for High-Speed Communications

Author(s):  
C. R. Doerr
2012 ◽  
Vol 20 (8) ◽  
pp. 9172 ◽  
Author(s):  
E. Rouvalis ◽  
M. Chtioui ◽  
M. Tran ◽  
F. Lelarge ◽  
F. van Dijk ◽  
...  

2021 ◽  
Author(s):  
S. Lischke ◽  
A. Peczek ◽  
J. S. Morgan ◽  
K. Sun ◽  
D. Steckler ◽  
...  

AbstractOn a scalable silicon technology platform, we demonstrate photodetectors matching or even surpassing state-of-the-art III–V devices. As key components in high-speed optoelectronics, photodetectors with bandwidths greater than 100 GHz have been a topic of intense research for several decades. Solely InP-based detectors could satisfy the highest performance specifications. Devices based on other materials, such as germanium-on-silicon devices, used to lag behind in speed, but enabled complex photonic integrated circuits and co-integration with silicon electronics. Here we demonstrate waveguide-coupled germanium photodiodes with optoelectrical 3-dB bandwidths of 265 GHz and 240 GHz at a photocurrent of 1 mA. This outstanding performance is achieved by a novel device concept in which a germanium fin is sandwiched between complementary in situ-doped silicon layers. Our photodetectors show internal responsivities of 0.3 A W−1 (265 GHz) and 0.45 A W−1 (240 GHz) at a wavelength of 1,550 nm. The internal bandwidth–efficiency product of the latter device is 86 GHz. Low dark currents of 100–200 nA are obtained from these ultra-fast photodetectors.


2021 ◽  
Author(s):  
Mark Dong ◽  
Genevieve Clark ◽  
Andrew J. Leenheer ◽  
Matthew Zimmermann ◽  
Daniel Dominguez ◽  
...  

AbstractRecent advances in photonic integrated circuits have enabled a new generation of programmable Mach–Zehnder meshes (MZMs) realized by using cascaded Mach–Zehnder interferometers capable of universal linear-optical transformations on N input/output optical modes. MZMs serve critical functions in photonic quantum information processing, quantum-enhanced sensor networks, machine learning and other applications. However, MZM implementations reported to date rely on thermo-optic phase shifters, which limit applications due to slow response times and high power consumption. Here we introduce a large-scale MZM platform made in a 200 mm complementary metal–oxide–semiconductor foundry, which uses aluminium nitride piezo-optomechanical actuators coupled to silicon nitride waveguides, enabling low-loss propagation with phase modulation at greater than 100 MHz in the visible–near-infrared wavelengths. Moreover, the vanishingly low hold-power consumption of the piezo-actuators enables these photonic integrated circuits to operate at cryogenic temperatures, paving the way for a fully integrated device architecture for a range of quantum applications.


Sign in / Sign up

Export Citation Format

Share Document