Measuring quantum efficiency and background absorption of an Ytterbium-doped ZBLAN fiber

Author(s):  
Mostafa Peysokhan ◽  
Behnam Abaie ◽  
Esmaeil Mobini ◽  
Saeid Rostami ◽  
Arash Mafi
2005 ◽  
Vol 125 ◽  
pp. 193-196 ◽  
Author(s):  
S. L. Oliveira ◽  
S. M. Lima ◽  
T. Catunda ◽  
H. Vargas ◽  
L. A.O. Nunes ◽  
...  

2003 ◽  
Vol 762 ◽  
Author(s):  
Jianhua Zhu ◽  
Vikram L. Dalal

AbstractWe report on the growth and properties of microcrystalline Si:H and (Si,Ge):H solar cells on stainless steel substrates. The solar cells were grown using a remote, low pressure ECR plasma system. In order to crystallize (Si,Ge), much higher hydrogen dilution (∼40:1) had to be used compared to the case for mc-Si:H, where a dilution of 10:1 was adequate for crystallization. The solar cell structure was of the p+nn+ type, with light entering the p+ layer. It was found that it was advantageous to use a thin a-Si:H buffer layer at the back of the cells in order to reduce shunt density and improve the performance of the cells. A graded gap buffer layer was used at the p+n interface so as to improve the open-circuit voltage and fill factor. The open circuit voltage and fill factor decreased as the Ge content increased. Quantum efficiency measurements indicated that the device was indeed microcrystalline and followed the absorption characteristics of crystalline ( Si,Ge). As the Ge content increased, quantum efficiency in the infrared increased. X-ray measurements of films indicated grain sizes of ∼ 10nm. EDAX measurements were used to measure the Ge content in the films and devices. Capacitance measurements at low frequencies ( ~100 Hz and 1 kHz) indicated that the base layer was indeed behaving as a crystalline material, with classical C(V) curves. The defect density varied between 1x1016 to 2x1017/cm3, with higher defects indicated as the Ge concentration increased.


2020 ◽  
Vol 14 (1) ◽  
pp. 011004
Author(s):  
Shubhra S. Pasayat ◽  
Chirag Gupta ◽  
Matthew S. Wong ◽  
Ryan Ley ◽  
Michael J. Gordon ◽  
...  

Author(s):  
A. V. Ermachikhin ◽  
◽  
Yu. V. Vorobyov ◽  
V. O. Sazonov ◽  
◽  
...  

Author(s):  
A. G. Wright

Standards laboratories can provide a photocathode calibration for quantum efficiency, as a function of wavelength, but their measurements are performed with the photomultiplier operating as a photodiode. Each photoelectron released makes a contribution to the photocathode current but, if it is lost or fails to create secondary electrons at d1, it makes no contribution to anode current. This is the basis of collection efficiency, F. The anode detection efficiency, ε‎, allied to F, refers to the counting efficiency of output pulses. The standard method for determining F involves photocurrent, anode current, count rate, and the use of highly attenuating filters; F may also be measured using methods based on single-electron responses (SERs), shot noise, or the SER at the first dynode.


Synthesis ◽  
2021 ◽  
Author(s):  
Fengtao Zhou ◽  
Qiuyu Zhang ◽  
Kashif Majeed ◽  
Bangjie Liu

AbstractA copper-catalyzed tandem reaction has been developed for the synthesis of 1,2,3-triazole-fused indole derivatives. This protocol allowed us to access a wide range of 1,2,3-triazole-fused indole derivatives in moderate to excellent yields. The 1,2,3-triazole-fused indole derivatives emit blue and greenish light when excited at 365 nm. The products were further explored for their quantum efficiency and photophysical properties.


Sign in / Sign up

Export Citation Format

Share Document