Fiber-based Coherent Doppler Lidar for Precision Landing on the Moon and Mars

Author(s):  
Farzin Amzajerdian ◽  
Larry Petway ◽  
Bruce Barnes ◽  
Glenn Hines ◽  
Diego Pierrottet ◽  
...  
Author(s):  
F. Amzajerdian ◽  
L. Petway ◽  
G. Hines ◽  
B. Barnes ◽  
D. Pierrottet ◽  
...  

2014 ◽  
Author(s):  
Songhua Wu ◽  
Jiaping Yin ◽  
Bingyi Liu ◽  
Jintao Liu ◽  
Rongzhong Li ◽  
...  

Atmosphere ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Hongwei Zhang ◽  
Xiaoying Liu ◽  
Qichao Wang ◽  
Jianjun Zhang ◽  
Zhiqiang He ◽  
...  

Low-level wind shear is usually to be a rapidly changing meteorological phenomenon that cannot be ignored in aviation security service by affecting the air speed of landing and take-off aircrafts. The lidar team in Ocean University of China (OUC) carried out the long term particular researches on the low-level wind shear identification and regional wind shear inducement search at Beijing Capital International Airport (BCIA) from 2015 to 2020 by operating several pulsed coherent Doppler lidar (PCDL) systems. On account of the improved glide path scanning strategy and virtual multiple wind anemometers based on the rang height indicator (RHI) modes, the small-scale meteorological phenomenon along the glide path and/or runway center line direction can be captured. In this paper, the device configuration, scanning strategies, and results of the observation data are proposed. The algorithms to identify the low-level wind shear based on the reconstructed headwind profiles data have been tested and proved based on the lidar data obtained from December 2018 to January 2019. High spatial resolution observation data at vertical direction are utilized to study the regional wind shear inducement at the 36L end of BCIA under strong northwest wind conditions.


2012 ◽  
Vol 625 ◽  
pp. 100-103
Author(s):  
Biao Zhao ◽  
Nai Gang Cui ◽  
Ji Feng Guo ◽  
Ping Wang

For the lunar return mission, a concern of the entry guidance requirement is the full flight envelope applicability and landing accuracy control. A concise numeric predictor-corrector (NPC) entry guidance (NPCEG) algorithm is developed for this requirement. It plans a real-time trajectory on-line by modulating the linear parameterized bank profile. To meet the path constraint, we propose an integrated guidance strategy which combines NPC method with an analytical constant drag acceleration method. Monte Carlo analysis shows that the algorithm is sufficiently robust to allow precision landing with a delivery error of less than 2.0 km for the entire between 2,500 km and 10,000 km range.


2007 ◽  
Vol 46 (11) ◽  
pp. 1953 ◽  
Author(s):  
S. Kameyama ◽  
T. Ando ◽  
K. Asaka ◽  
Y. Hirano ◽  
S. Wadaka

Sign in / Sign up

Export Citation Format

Share Document