Design of single-mode narrow-bandwidth thermal emitters for enhanced infrared light sources

2012 ◽  
Vol 30 (1) ◽  
pp. 165 ◽  
Author(s):  
Takuya Inoue ◽  
Takashi Asano ◽  
Menaka De Zoysa ◽  
Ardavan Oskooi ◽  
Susumu Noda
Author(s):  
Tun Cao ◽  
Meng Lian ◽  
Xianchao Lou ◽  
Kuan Liu ◽  
Yaoming Guo ◽  
...  

Abstract Efficient thermal radiation in the mid-infrared (M-IR) region is of supreme importance for many applications including thermal imaging and sensing, thermal infrared light sources, infrared spectroscopy, emissivity coatings, and camouflage. The capability of controlling light makes metasurface an attractive platform for infrared applications. Recently, different metamaterials have been proposed to achieve high thermal radiation. To date, broadening of the radiation bandwidth of metasurface emitter (meta-emitter) has become a key goal to enable extensive applications. We experimentally demonstrate a broadband M-IR thermal emitter using stacked nanocavity metasurface consisting of two pairs of circular-shaped dielectric (Si3N4) – metal (Au) stacks. A high thermal radiation can be obtained by engineering the geometry of nanocavity metasurface. Such a meta-emitter provides wideband and broad angular absorptance of both p- and s-polarized light, offering a wideband thermal radiation with an average emissivity of more than 80% in the M-IR atmospheric window of 8–14 μm. The experimental illustration together with theoretical framework places a basis for designing broadband thermal emitters, which, as anticipated, will initiate a promising avenue to M-IR source.


1999 ◽  
Vol 09 (PR2) ◽  
pp. Pr2-161
Author(s):  
F. H. Julien ◽  
P. Boucaud ◽  
S. Sauvage ◽  
O. Gauthier-Lafaye ◽  
Z. Moussa

2012 ◽  
Vol 18 (1) ◽  
pp. 531-540 ◽  
Author(s):  
Jens Biegert ◽  
Philip K. Bates ◽  
Olivier Chalus

2013 ◽  
Vol 6 (1) ◽  
pp. 267-285 ◽  
Author(s):  
Corey N. Stedwell ◽  
Johan F. Galindo ◽  
Adrian E. Roitberg ◽  
Nicolas C. Polfer

Author(s):  
Erik Krenzen ◽  
Louis M. Kehlet ◽  
Peter Tidemand-Lichtenberg ◽  
Jeppe S. Dam ◽  
Ole B. Jensen ◽  
...  

2017 ◽  
Author(s):  
Jaemin Lee

Introduction. Planarians are renowned for their regenerative ability due to pluripotent stem cells, as well as their peculiar photophobic response. However, few facts are known about their aggregational behavior. This study aims to reveal the effect of light on aggregational behavior. Reynierse (1966) suggested that light has a negative effect on the formation of aggregations. However, one of his objectives for aggregational behavior was inappropriate. This study reevaluated the effect of existence of light on aggregational behavior, as well as ascertained the effect of wavelength on the formation of aggregations. Methods. In this study, the ratio of individuals participating in aggregations was measured as a criterion to determine aggregational behavior. Aggregational behavior was measured after two hours from the initial exposure to different light sources. The behaviors under white LED light and under shade were compared, as well as the behaviors under five different light sources: infrared lamp, red, green, blue LED, and ultraviolet lamp. Results. The existence of light interfered the formation of aggregations (t-test, p < 0.0001), which supports the former study of Reynierse. Also, aggregational behavior differed under different wavelengths (ANOVA, p < 0.0001). Except for the infrared light which emitted a wide range of wavelengths, the behavior showed hierarchy: decreasing aggregational behavior in accordance with decreasing wavelength. UV light has the most significant negative effect on the formation of aggregations. Discussion. Exposure to light caused negative effects on performing aggregational behavior. Participation in aggregations appears to be influenced by photophobic response, especially under lights of short wavelength. Disintegrating aggregations under exposure to lights can potentially bring evolutionary benefit. This behavior possibly makes the aggregating planarians altogether exposed to a higher risk or predation, considering that they lack defense mechanisms. Planarians can lower the risk and continue the populations by disintegrating the aggregational behavior under the existence of UV and lights of higher wavelength, which are indicatives of daytime. Understanding aggregational behavior of animals of a lower order would give better insight on general herding behavior, and potentially help interpreting more complex behaviors of higher animals.


2019 ◽  
Vol 25 (6) ◽  
pp. 1-9 ◽  
Author(s):  
Aditya Malik ◽  
Alexander Spott ◽  
Eric J. Stanton ◽  
Jonathan D. Peters ◽  
Jeremy Daniel Kirch ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Florian Vogelbacher ◽  
Martin Sagmeister ◽  
Jochen Kraft ◽  
Xue Zhou ◽  
Jinhua Huang ◽  
...  

AbstractOne of the major barriers for a widespread commercial uptake of silicon nitride photonic integrated circuits for cost-sensitive applications is the lack of low-cost monolithically integrated laser light sources directly emitting into single-mode waveguides. In this work, we demonstrate an optically pumped organic solid-state slot-waveguide distributed feedback laser designed for a silicon nitride organic hybrid photonic platform. Pulsed optical excitation of the gain medium is achieved by a 450 nm laser diode. The optical feedback for lasing is based on a second-order laterally coupled Bragg grating with a slot-waveguide core. Optimized material gain properties of the organic dye together with the increased modal gain of the laser mode arising from the improved overlap of the slot-waveguide geometry with the gain material enable single-mode lasing at a wavelength of 600 nm. The straightforward integration and operation with a blue laser diode leads to a cost-effective coherent light source for photonic integrated devices.


Sign in / Sign up

Export Citation Format

Share Document