International Journal of Extreme Manufacturing
Latest Publications


TOTAL DOCUMENTS

103
(FIVE YEARS 103)

H-INDEX

9
(FIVE YEARS 9)

Published By Iop Publishing

2631-7990, 2631-8644

Author(s):  
Francesc Caballero-Lucas ◽  
Kotaro Obata ◽  
Koji Sugioka

Abstract Ultrashort laser pulses confine material processing to the laser-irradiated area by suppressing heat diffusion, resulting in precise ablation in diverse materials. However, challenges occur when high speed material removal and higher ablation efficiencies are required. Ultrafast burst mode laser ablation has been proposed as a successful method to overcome these limitations. Following this approach, we studied the influence of combining GHz bursts in MHz bursts, known as BiBurst mode, on ablation efficiency of silicon. BiBurst mode used in this study consists of multiple bursts happening at a repetition rate of 64 MHz, each of which contains multiple pulses with a repetition rate of 5 GHz. The obtained results show differences between BiBurst mode and conventional single pulse mode laser ablation, with a remarkable increase in ablation efficiency for the BiBurst mode, which under optimal conditions can ablate a volume 4.5 times larger than the single pulse mode ablation when delivering the same total energy in the process.


Author(s):  
Jiale Yong ◽  
Qing Yang ◽  
Jinglan Huo ◽  
Xun Hou ◽  
Feng Chen

Abstract Underwater transportation of bubbles and gases has essential applications in manipulating and using gas, but there is still a great challenge to achieve this function at the microscopic level. Here, we report a strategy to self-transport gas along the laser-induced open superhydrophobic microchannel with a width less than 100 µm in water. The femtosecond laser can directly write superhydrophobic and underwater superaerophilic microgrooves on the polytetrafluoroethylene (PTFE) surface. In water, the single laser-induced microgroove and water medium generate a hollow microchannel. When the microchannel connects two superhydrophobic regions in water, the gas can be spontaneously transported from the small region to the large area along this hollow microchannel. The gas self-transportation can be extended to the laser-drilled microholes through a thin PTFE sheet. Anti-buoyancy unidirectional penetration is even achieved. The gas can overcome the buoyance of the bubble and spontaneously transport downward. The Laplace pressure difference drives the processes of spontaneous gas transportation and unidirectional bubble passage. We believe the property of gas self-transportation in the femtosecond laser-structured open superhydrophobic and underwater superaerophilic microgrooves/microholes has significant potential applications related to manipulating underwater gas.


Author(s):  
Wenxuan Zhang ◽  
Wenyuan Hou ◽  
Luc Deike ◽  
Craig Arnold

Abstract The periodic undulation of a molten track's height profile in laser-based powder bed fusion of metals (PBF-LB/M) is a commonly observed phenomena that can cause defects and building failure during the manufacturing process. However a quantitative analysis of such instabilities has not been fully established and so here we used Rayleigh-Plateau theory to determine the stability of a single molten track in PBF-LB/M and tested it with various processing conditions by changing laser power and beam shape. The analysis discovered that normalized enthalpy, which relates to energy input density, determines whether a molten track is initially unstable and if so, the growth rate for the instability. Additionally, whether the growth rate ultimately yields significant undulation depends on the melt duration, estimated by dwell time in our experiment.


Author(s):  
Tun Cao ◽  
Meng Lian ◽  
Xianchao Lou ◽  
Kuan Liu ◽  
Yaoming Guo ◽  
...  

Abstract Efficient thermal radiation in the mid-infrared (M-IR) region is of supreme importance for many applications including thermal imaging and sensing, thermal infrared light sources, infrared spectroscopy, emissivity coatings, and camouflage. The capability of controlling light makes metasurface an attractive platform for infrared applications. Recently, different metamaterials have been proposed to achieve high thermal radiation. To date, broadening of the radiation bandwidth of metasurface emitter (meta-emitter) has become a key goal to enable extensive applications. We experimentally demonstrate a broadband M-IR thermal emitter using stacked nanocavity metasurface consisting of two pairs of circular-shaped dielectric (Si3N4) – metal (Au) stacks. A high thermal radiation can be obtained by engineering the geometry of nanocavity metasurface. Such a meta-emitter provides wideband and broad angular absorptance of both p- and s-polarized light, offering a wideband thermal radiation with an average emissivity of more than 80% in the M-IR atmospheric window of 8–14 μm. The experimental illustration together with theoretical framework places a basis for designing broadband thermal emitters, which, as anticipated, will initiate a promising avenue to M-IR source.


Author(s):  
Jian Gao ◽  
Xichun Luo ◽  
Fengzhou Fang ◽  
Jining Sun

Abstract Atomic and Close-to-atomic Scale Manufacturing (ACSM) represents techniques for manufacturing high-end products in various fields, including future-generation computing, communication, energy and medical devices and materials. In this paper, the theoretical boundary between ACSM and classical manufacturing is identified after a thorough discussion of quantum mechanics and their effects on manufacturing. The physical origins of atomic interactions and energy beams-matter interactions are revealed from the point view of quantum mechanics. The mechanisms that dominate several key ACSM processes are introduced, and a current numerical study on these processes is reviewed. A comparison of current ACSM processes is performed in terms of dominant interactions, representative processes, resolution and modelling methods. Future fundamental research is proposed for establishing new approaches for modelling ACSM, material selection or preparation and control of manufacturing tools and environments. This paper is by no means comprehensive, but provides a starting point for further systematic investigation of ACSM fundamentals to support and accelerate its industrial scale implementation in the near future.


Author(s):  
Wanfei Ren ◽  
Jinkai Xu ◽  
Zhongxu Lian ◽  
Xiaoqing Sun ◽  
Zheming Xu ◽  
...  

Abstract The fabrication of pure copper microstructures with submicron resolution has found a host of applications such as 5G communications and highly sensitive detection. The tiny and complex features of these structures can enhance device performance during high-frequency operation. However, the easy manufacturing of microstructures is still a challenge. In this paper, we present localized electrochemical deposition micro additive manufacturing (LECD-μAM), combining localized electrochemical deposition (LECD) and closed-loop control of atomic force servo technology, which can print helical springs and hollow tubes very effectively. We further demonstrate an overall model based on pulsed microfluidics from a hollow cantilever LECD process and the closed-loop control of an atomic force servo. The printing state of the micro-helical springs could be assessed by simultaneously detecting the Z-axis displacement and the deflection of the atomic force probe (AFP) cantilever. The results showed that it took 361 s to print a helical spring with a wire length of 320.11 μm at a deposition rate of 0.887 μm/s, which could be changed on the fly by simply tuning the extrusion pressure and the applied voltage. Moreover, the in situ nanoindenter was used to measure the compressive mechanical properties of the helical spring. The shear modulus of the helical spring material was about 60.8 GPa, much higher than that of bulk copper (~44.2 GPa). Additionally, the microscopic morphology and chemical composition of the spring were characterized. These results delineated a new way of fabricating terahertz transmitter components and micro-helical antennas with LECD-μAM technology.


Author(s):  
Qiangsheng Sun ◽  
Zhixiang Xue ◽  
Yang Chen ◽  
Ruding Xia ◽  
Jianmei Wang ◽  
...  

Abstract It is desirable to fabricate materials with adjustable physical properties that can be used in different industrial applications. Since the property of materials is highly dependent on its inner structure, the understanding of structure-property correlation is critical to the design of engineering materials. 3D printing appears as a mature method to effectively produce micro-structured materials. In this work, we created different stainless-steel microstructures by adjusting the speed of 3D printing and studied their relationship between thermal property and printing speed. Microstructure study demonstrates that highly porous structure appears at higher speed, and there is nearly linear relationship between porosity and printing speed. Thermal conductivity of samples fabricated by different printing speeds is characterized, then the correlation among the porosity, thermal conductivity, and scanning speed is established. Based on this correlation, the thermal conductivity of sample can be predicted from its printing speed. We fabricated a new sample at a different speed, and the measurement result of thermal conductivity agrees well with the predicted value from the correlation. To explore thermal transport physics, the effects of the pore structure and temperature on the thermal performance of the printed block are also studied. Our work demonstrates that the combination of the 3D printing technique and the printing speed control can realize regulation of the thermophysical properties of materials.


Author(s):  
Ziheng Zhan ◽  
Lei Chen ◽  
Huigao Duan ◽  
Yiqin Chen ◽  
Min He ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document