photophobic response
Recently Published Documents


TOTAL DOCUMENTS

38
(FIVE YEARS 1)

H-INDEX

18
(FIVE YEARS 0)

2021 ◽  
Vol 118 (6) ◽  
pp. e2009634118
Author(s):  
Hironori Takahashi ◽  
Mako Kamiya ◽  
Minoru Kawatani ◽  
Keitaro Umezawa ◽  
Yoshiaki Ukita ◽  
...  

Caenorhabditis elegans is used as a model system to understand the neural basis of behavior, but application of caged compounds to manipulate and monitor the neural activity is hampered by the innate photophobic response of the nematode to short-wavelength light or by the low temporal resolution of photocontrol. Here, we develop boron dipyrromethene (BODIPY)-derived caged compounds that release bioactive phenol derivatives upon illumination in the yellow wavelength range. We show that activation of the transient receptor potential vanilloid 1 (TRPV1) cation channel by spatially targeted optical uncaging of the TRPV1 agonist N-vanillylnonanamide at 580 nm modulates neural activity. Further, neuronal activation by illumination-induced uncaging enables optical control of the behavior of freely moving C. elegans without inducing a photophobic response and without crosstalk between uncaging and simultaneous fluorescence monitoring of neural activity.



2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yusuke Sakai ◽  
Kagayaki Kato ◽  
Hiroshi Koyama ◽  
Alyson Kuba ◽  
Hiroki Takahashi ◽  
...  

Abstract Behavioral responses to environmental factors at the planktonic larval stage can have a crucial influence on habitat selection and therefore adult distributions in many benthic organisms. Reef-building corals show strong patterns of zonation across depth or underwater topography, with different suites of species aggregating in different light environments. One potential mechanism driving this pattern is the response of free-swimming larvae to light. However, there is little experimental support for this hypothesis; in particular, there are few direct and quantitative observations of larval behavior in response to light. Here, we analyzed the swimming behavior of larvae of the common reef coral Acropora tenuis under various light conditions. Larvae exhibited a step-down photophobic response, i.e. a marked decrease in swimming speed, in response to a rapid attenuation (step-down) of light intensity. Observations of larvae under different wavelengths indicated that only the loss of blue light (wavelengths between 400 and 500 nm) produced a significant response. Mathematical simulations of this step-down photophobic response indicate that larvae will aggregate in the lighter areas of two-dimensional large rectangular fields. These results suggest that the step-down photophobic response of coral larvae may play an important role in determining where larval settle on the reef.



2017 ◽  
Author(s):  
Jaemin Lee

Introduction. Planarians are renowned for their regenerative ability due to pluripotent stem cells, as well as their peculiar photophobic response. However, few facts are known about their aggregational behavior. This study aims to reveal the effect of light on aggregational behavior. Reynierse (1966) suggested that light has a negative effect on the formation of aggregations. However, one of his objectives for aggregational behavior was inappropriate. This study reevaluated the effect of existence of light on aggregational behavior, as well as ascertained the effect of wavelength on the formation of aggregations. Methods. In this study, the ratio of individuals participating in aggregations was measured as a criterion to determine aggregational behavior. Aggregational behavior was measured after two hours from the initial exposure to different light sources. The behaviors under white LED light and under shade were compared, as well as the behaviors under five different light sources: infrared lamp, red, green, blue LED, and ultraviolet lamp. Results. The existence of light interfered the formation of aggregations (t-test, p < 0.0001), which supports the former study of Reynierse. Also, aggregational behavior differed under different wavelengths (ANOVA, p < 0.0001). Except for the infrared light which emitted a wide range of wavelengths, the behavior showed hierarchy: decreasing aggregational behavior in accordance with decreasing wavelength. UV light has the most significant negative effect on the formation of aggregations. Discussion. Exposure to light caused negative effects on performing aggregational behavior. Participation in aggregations appears to be influenced by photophobic response, especially under lights of short wavelength. Disintegrating aggregations under exposure to lights can potentially bring evolutionary benefit. This behavior possibly makes the aggregating planarians altogether exposed to a higher risk or predation, considering that they lack defense mechanisms. Planarians can lower the risk and continue the populations by disintegrating the aggregational behavior under the existence of UV and lights of higher wavelength, which are indicatives of daytime. Understanding aggregational behavior of animals of a lower order would give better insight on general herding behavior, and potentially help interpreting more complex behaviors of higher animals.



2017 ◽  
Author(s):  
Jaemin Lee

Introduction. Planarians are renowned for their regenerative ability due to pluripotent stem cells, as well as their peculiar photophobic response. However, few facts are known about their aggregational behavior. This study aims to reveal the effect of light on aggregational behavior. Reynierse (1966) suggested that light has a negative effect on the formation of aggregations. However, one of his objectives for aggregational behavior was inappropriate. This study reevaluated the effect of existence of light on aggregational behavior, as well as ascertained the effect of wavelength on the formation of aggregations. Methods. In this study, the ratio of individuals participating in aggregations was measured as a criterion to determine aggregational behavior. Aggregational behavior was measured after two hours from the initial exposure to different light sources. The behaviors under white LED light and under shade were compared, as well as the behaviors under five different light sources: infrared lamp, red, green, blue LED, and ultraviolet lamp. Results. The existence of light interfered the formation of aggregations (t-test, p < 0.0001), which supports the former study of Reynierse. Also, aggregational behavior differed under different wavelengths (ANOVA, p < 0.0001). Except for the infrared light which emitted a wide range of wavelengths, the behavior showed hierarchy: decreasing aggregational behavior in accordance with decreasing wavelength. UV light has the most significant negative effect on the formation of aggregations. Discussion. Exposure to light caused negative effects on performing aggregational behavior. Participation in aggregations appears to be influenced by photophobic response, especially under lights of short wavelength. Disintegrating aggregations under exposure to lights can potentially bring evolutionary benefit. This behavior possibly makes the aggregating planarians altogether exposed to a higher risk or predation, considering that they lack defense mechanisms. Planarians can lower the risk and continue the populations by disintegrating the aggregational behavior under the existence of UV and lights of higher wavelength, which are indicatives of daytime. Understanding aggregational behavior of animals of a lower order would give better insight on general herding behavior, and potentially help interpreting more complex behaviors of higher animals.



Protist ◽  
2013 ◽  
Vol 164 (3) ◽  
pp. 313-322
Author(s):  
Robert Hinrichsen ◽  
Christian Peters


2012 ◽  
Vol 48 (3) ◽  
pp. 675-681 ◽  
Author(s):  
Deirdre H. McLachlan ◽  
Graham J. C. Underwood ◽  
Alison R. Taylor ◽  
Colin Brownlee


2008 ◽  
Vol 112 (47) ◽  
pp. 15182-15194 ◽  
Author(s):  
Johanna Brazard ◽  
Christian Ley ◽  
Fabien Lacombat ◽  
Pascal Plaza ◽  
Monique M. Martin ◽  
...  
Keyword(s):  


2006 ◽  
Vol 173 (5) ◽  
pp. 743-754 ◽  
Author(s):  
Ken-ichi Wakabayashi ◽  
Stephen M. King

Redox-based regulatory systems are essential for many cellular activities. Chlamydomonas reinhardtii exhibits alterations in motile behavior in response to different light conditions (photokinesis). We hypothesized that photokinesis is signaled by variations in cytoplasmic redox poise resulting from changes in chloroplast activity. We found that this effect requires photosystem I, which generates reduced NADPH. We also observed that photokinetic changes in beat frequency and duration of the photophobic response could be obtained by altering oxidative/reductive stress. Analysis of reactivated cell models revealed that this redox poise effect is mediated through the outer dynein arms (ODAs). Although the global redox state of the thioredoxin-related ODA light chains LC3 and LC5 and the redox-sensitive Ca2+-binding subunit of the docking complex DC3 did not change upon light/dark transitions, we did observe significant alterations in their interactions with other flagellar components via mixed disulfides. These data indicate that redox poise directly affects ODAs and suggest that it may act in the control of flagellar motility.



2004 ◽  
Vol 19 (2) ◽  
pp. 167-179 ◽  
Author(s):  
Stanley A. Conn ◽  
Marlene Bahena ◽  
Julia T. Davis ◽  
Ryan L. Ragland ◽  
Carlton D. Rauschenberg ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document