scholarly journals Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects

2013 ◽  
Vol 30 (11) ◽  
pp. 2810 ◽  
Author(s):  
Mohammad Javad Faghihi ◽  
Mohammad Kazem Tavassoly
1995 ◽  
Vol 48 (6) ◽  
pp. 907 ◽  
Author(s):  
Rui-hua Xie ◽  
Gong-ou Xu ◽  
Dun-huan Liu

We have studied the squeezing properties of a field and atom in a two-level system. The influence of nonlinear interactions (Le. the arbitrary intensity-dependent coupling of a single-mode field to a single two-level atom, the nonlinear interaction of the field with a nonlinear Kerr-like medium) on the squeezing is discussed in detail in the rotating wave approximation (RWA). We show numerically that the effect of the virtual-photon field suppresses dipole squeezing predicted in the RWA and leads to an increased squeeze revival period; the suppressed squeezing can be revived due to the presence of the nonlinear Kerr-like medium.


2021 ◽  
pp. 2150060
Author(s):  
N. H. Abd El-Wahab ◽  
R. A. Zait

We consider a generalized multi-photon interaction of two collectively two-level atoms with two-mode of electromagnetic field in the presence of Kerr medium and intensity-dependent coupling. We show that this atomic system possesses supersymmetric structure. We solved this system by virtue of supersymmetric unitary transformation. The supersymmetric generators of this atomic system are constructed. The diagonalization of the corresponding Hamiltonian is performed by introducing a supersymmetric unitary transformation. Accordingly, the eigenvalues and eigenfunctions of the Hamiltonian of the atomic system are obtained. The time evolution of the atom–field wave functions is derived in an exact form for two cases of the initial states of the atoms and the field modes. Some quantum effects such as the second-order correlation function, cross-correlation, purity and Husimi Q-function are investigated. The effects of the Kerr medium, detuning parameter, intensity-dependent coupling and multi-photon transition on the evolution of these quantum effects are examined. We conclude that the supersymmetric unitary transformation method is very simple and can be applied to a variety of atomic systems which possess a supersymmetric structure.


2004 ◽  
Vol 18 (20n21) ◽  
pp. 2901-2914
Author(s):  
R. A. ZAIT

We study the interaction of a moving four-level atom with a single mode cavity field. Involving intensity dependent coupling, the atom-field wave function and the reduced density matrix of the field are obtained when the atom is initially prepared in a coherent superposition of the upper and ground states and the field is initially in a coherent state. The influence of the intensity dependent atom-field coupling and of the detuning on the collapse and revival phenomenon of the time evolution of statistical aspects, such as the mean photon number, the second-order correlation function of the field, the momentum increment and momentum diffusion, are investigated. It is found that, for the nonresonant case, the detuning between the field and the atom has a significant influence which leads to increasing the collapse time with decreasing amplitude. Numerical computations and discussion of the results are presented.


2021 ◽  
Author(s):  
N.H. Abdel-Wahab ◽  
S. Abdel-Khalek ◽  
E.M. Khalil ◽  
Nawal Alshehri

Abstract The aim of this paper is to study the interaction between a single mode field and four-level atom in N - configuration under nonlinear medium effect. The non-resonance case and the deformation forms in the coupling interaction between the field and the atom are included. The wave function of the proposed system is obtained when the atom is prepared initially in its excited state while the field is prepared in a coherent state. The effect of the deformation and nonlinear medium on the temporal behavior of collapse-revival, field entropy and geometric phase of the system are examined. The results show that the presence of the intensity of the coupling interaction and the non-linear medium have an important influence on the properties of these phenomena.


2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
F. K. Faramawy

We study the interaction of a three-level atom with a single mode field through multiphoton transition in a cavity, taking explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The analytical forms of the absorption spectrum is calculated using the dressed states of the system. The effects of photon multiplicities, mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the absorption spectrum are analyzed.


2012 ◽  
Vol 10 (01) ◽  
pp. 1250007 ◽  
Author(s):  
NOUR ZIDAN ◽  
S. ABDEL-KHALEK ◽  
M. ABDEL-ATY

In this paper, we investigate the geometric phase of the field interacting with a moving four-level atom in the presence of Kerr medium. The results show that the atomic motion, the field-mode structure and Kerr medium play important roles in the evolution of the system dynamics. As illustration, we examine the behavior of the geometric phase and entanglement with experimentally accessible parameters. Some new aspects are observed and discussed.


Sign in / Sign up

Export Citation Format

Share Document