scholarly journals A Treatment of the Absorption Spectrum for a Multiphoton -Type Three-Level Atom Interacting with a Squeezed Coherent Field in the Presence of Nonlinearities

2011 ◽  
Vol 2011 ◽  
pp. 1-11
Author(s):  
F. K. Faramawy

We study the interaction of a three-level atom with a single mode field through multiphoton transition in a cavity, taking explicitly into account the existence of forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. The analytical forms of the absorption spectrum is calculated using the dressed states of the system. The effects of photon multiplicities, mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the absorption spectrum are analyzed.

2004 ◽  
Vol 18 (20n21) ◽  
pp. 2901-2914
Author(s):  
R. A. ZAIT

We study the interaction of a moving four-level atom with a single mode cavity field. Involving intensity dependent coupling, the atom-field wave function and the reduced density matrix of the field are obtained when the atom is initially prepared in a coherent superposition of the upper and ground states and the field is initially in a coherent state. The influence of the intensity dependent atom-field coupling and of the detuning on the collapse and revival phenomenon of the time evolution of statistical aspects, such as the mean photon number, the second-order correlation function of the field, the momentum increment and momentum diffusion, are investigated. It is found that, for the nonresonant case, the detuning between the field and the atom has a significant influence which leads to increasing the collapse time with decreasing amplitude. Numerical computations and discussion of the results are presented.


2015 ◽  
Vol 93 (11) ◽  
pp. 1375-1381
Author(s):  
A.A. Eied

A treatment of a multi-photon Ξ-type three-level atom interacting with a single-mode field in a cavity, taking explicitly the existence of forms of nonlinearities of both the field and the intensity-dependent atom–field coupling into account. Analytical expressions of the emission spectrum are presented using the dressed states of the system. The characteristics of the emission spectrum, considering the field to be initially in a binomial state, are exhibited. The effects of the photon multiplicities, mean number of photons, detuning, and the nonlinearities on the spectrum are investigated.


2009 ◽  
Vol 23 (09) ◽  
pp. 2269-2283 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom-field entanglement in a system of a Ξ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom-field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium and the intensity-dependent coupling functional on the entropy are analyzed.


2009 ◽  
Vol 23 (15) ◽  
pp. 3241-3254 ◽  
Author(s):  
A.-S. F. OBADA ◽  
A. A. EIED ◽  
G. M. ABD AL-KADER

We investigate the evolution of the atomic quantum entropy and the atom–field entanglement in a system of a Λ-configuration three-level atom interacting with a single-mode field with additional forms of nonlinearities of both the field and the intensity-dependent atom–field coupling. With the derivation of the unitary operator within the frame of the dressed state and the exact results for the state of the system, we perform a careful investigation of the temporal evolution of the entropy. A factorization of the initial density operator is assumed, considering the field to be initially in a squeezed coherent or binomial state. The effects of the mean photon number, detuning, Kerr-like medium, and the intensity-dependent coupling functional on the entropy are analyzed.


2003 ◽  
Vol 17 (07) ◽  
pp. 253-262 ◽  
Author(s):  
MAHMOUD ABDEL-ATY

In this essay we introduce a new Hamiltonian which represents the interaction between a three-level atom and a single electromagnetic field including arbitrary forms of nonlinearities of both the field and the intensity-dependent coupling. We derive an exact solution for the density operator of the system by means of which we study the field purity for the entangled state of the system. Also, the influences of the nonlinearities on the field purity and mean photon number are examined. Under the condition of an initial coherent field, the field purity shows the collapse-revival phenomenon. It is found that features of these phenomenon are sensitive to the changes of different kinds of the nonlinearities.


1995 ◽  
Vol 48 (6) ◽  
pp. 907 ◽  
Author(s):  
Rui-hua Xie ◽  
Gong-ou Xu ◽  
Dun-huan Liu

We have studied the squeezing properties of a field and atom in a two-level system. The influence of nonlinear interactions (Le. the arbitrary intensity-dependent coupling of a single-mode field to a single two-level atom, the nonlinear interaction of the field with a nonlinear Kerr-like medium) on the squeezing is discussed in detail in the rotating wave approximation (RWA). We show numerically that the effect of the virtual-photon field suppresses dipole squeezing predicted in the RWA and leads to an increased squeeze revival period; the suppressed squeezing can be revived due to the presence of the nonlinear Kerr-like medium.


2003 ◽  
Vol 02 (01n02) ◽  
pp. 49-63 ◽  
Author(s):  
Mahmoud Abdel-Aty ◽  
Tarek M. El-Shahat ◽  
Abdel-Shafy F. Obada

We present a detailed theory of a general formalism of a nonlinear JC-model. In particular we explicitly take into account forms of nonlinearities of both the field and the intensity-dependent atom-field coupling and study the properties of the fluorescence spectrum in this system. The exact solution for time-dependence of the atom-field system is obtained, by means of which we analyze the analytic form of the fluorescence spectrum produced by an atom in an ideal cavity using the transitions among the dressed states of the system. We investigate the influences of the nonlinearities on the fluorescence spectrum, for initial squeezed, thermal and coherent states. It is shown that features of the fluorescence spectrum are significantly influenced by the kinds of nonlinearities of the single-mode field.


2006 ◽  
Vol 20 (20) ◽  
pp. 2889-2898
Author(s):  
QING-CHUN ZHOU ◽  
SHI NING ZHU

By using the full quantum theory, we investigate the time evolution of the atomic dipole squeezing parameters of a Λ-type three-level atom interacting with a single-mode coherent optical field, and study the influence of the initial coherent-field intensity, the initial atomic coherence, the initial populations and energy splitting of the two lower atomic levels on the atomic dipole squeezing. The influence of a classical external driving field coupling to the atom on the atomic dipole squeezing is also explored at the end of the paper.


Sign in / Sign up

Export Citation Format

Share Document