scholarly journals Entropic uncertainty relations and the measurement range problem, with consequences for high-dimensional quantum key distribution

2019 ◽  
Vol 36 (3) ◽  
pp. B65 ◽  
Author(s):  
J. Eli Bourassa ◽  
Hoi-Kwong Lo
2016 ◽  
Vol 24 (19) ◽  
pp. 22159 ◽  
Author(s):  
Haize Bao ◽  
Wansu Bao ◽  
Yang Wang ◽  
Ruike Chen ◽  
Chun Zhou ◽  
...  

2020 ◽  
Vol 18 (06) ◽  
pp. 2050031
Author(s):  
Ali Mehri-Toonabi ◽  
Mahdi Davoudi Darareh ◽  
Shahrooz Janbaz

In this work, we introduce a high-dimensional polarization-phase (PoP)-based quantum key distribution protocol, briefly named PoP[Formula: see text], where [Formula: see text] is the dimension of a hybrid quantum state including polarization and phase degrees of freedom of the same photon, and [Formula: see text] is the number of mutually unbiased bases. We present a detailed description of the PoP[Formula: see text] protocol as a special case, and evaluate its security against various individual and coherent eavesdropping strategies, and in each case, we compare it with the BB84 and the two-dimensional (TD)-PoP protocols. In all the strategies, the error threshold and the effective transmission rate of the PoP[Formula: see text] protocol are far greater than the other two protocols. Unlike most high-dimensional protocols, the simplicity of producing and detecting the qudits and the use of conventional components (such as traditional single-photon sources and quantum channels) are among the features of the PoP[Formula: see text] protocol.


Author(s):  
Murat Can Sarihan ◽  
Kai-Chi Chang ◽  
Xiang Cheng ◽  
Yoo Seung Lee ◽  
Changchen Chen ◽  
...  

Author(s):  
Tristan B. H. Tentrup ◽  
Willemijn M. Luiten ◽  
Peter Hooijschuur ◽  
Reinier van der Meer ◽  
Pepijn W. H. Pinkse

CLEO: 2014 ◽  
2014 ◽  
Author(s):  
Catherine Lee ◽  
Zheshen Zhang ◽  
Jacob Mower ◽  
Greg Steinbrecher ◽  
Hongchao Zhou ◽  
...  

Quantum ◽  
2017 ◽  
Vol 1 ◽  
pp. 14 ◽  
Author(s):  
Marco Tomamichel ◽  
Anthony Leverrier

In this work we present a security analysis for quantum key distribution, establishing a rigorous tradeoff between various protocol and security parameters for a class of entanglement-based and prepare-and-measure protocols. The goal of this paper is twofold: 1) to review and clarify the stateof-the-art security analysis based on entropic uncertainty relations, and 2) to provide an accessible resource for researchers interested in a security analysis of quantum cryptographic protocols that takes into account finite resource effects. For this purpose we collect and clarify several arguments spread in the literature on the subject with the goal of making this treatment largely self-contained. More precisely, we focus on a class of prepare-and-measure protocols based on the Bennett-Brassard (BB84) protocol as well as a class of entanglement-based protocols similar to the Bennett-Brassard-Mermin (BBM92) protocol. We carefully formalize the different steps in these protocols, including randomization, measurement, parameter estimation, error correction and privacy amplification, allowing us to be mathematically precise throughout the security analysis. We start from an operational definition of what it means for a quantum key distribution protocol to be secure and derive simple conditions that serve as sufficient condition for secrecy and correctness. We then derive and eventually discuss tradeoff relations between the block length of the classical computation, the noise tolerance, the secret key length and the security parameters for our protocols. Our results significantly improve upon previously reported tradeoffs.


Sign in / Sign up

Export Citation Format

Share Document