Holographic calibration setup based on a set of reference kits comprising axial computer-generated holograms and base test plates

2021 ◽  
Vol 88 (7) ◽  
pp. 368
Author(s):  
A. V. Lukin ◽  
V. I. Kurt ◽  
A. N. Mel’nikov ◽  
A. I. Sadrutdinov ◽  
A. A. Yankovskii
Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 298
Author(s):  
Juan Martinez-Carranza ◽  
Tomasz Kozacki ◽  
Rafał Kukołowicz ◽  
Maksymilian Chlipala ◽  
Moncy Sajeev Idicula

A computer-generated hologram (CGH) allows synthetizing view of 3D scene of real or virtual objects. Additionally, CGH with wide-angle view offers the possibility of having a 3D experience for large objects. An important feature to consider in the calculation of CGHs is occlusion between surfaces because it provides correct perception of encoded 3D scenes. Although there is a vast family of occlusion culling algorithms, none of these, at the best of our knowledge, consider occlusion when calculating CGHs with wide-angle view. For that reason, in this work we propose an occlusion culling algorithm for wide-angle CGHs that uses the Fourier-type phase added stereogram (PAS). It is shown that segmentation properties of the PAS can be used for setting efficient conditions for occlusion culling of hidden areas. The method is efficient because it enables processing of dense cloud of points. The investigated case has 24 million of point sources. Moreover, quality of the occluded wide-angle CGHs is tested by two propagation methods. The first propagation technique quantifies quality of point reproduction of calculated CGH, while the second method enables the quality assessment of the occlusion culling operation over an object of complex shape. Finally, the applicability of proposed occlusion PAS algorithm is tested by synthetizing wide-angle CGHs that are numerically and optically reconstructed.


2021 ◽  
Vol 11 (16) ◽  
pp. 7199
Author(s):  
Dapu Pi ◽  
Juan Liu

In this article, we propose a reference light wave multiplexing scheme to increase the information capacity of computer-generated holograms. The holograms were generated by different reference light waves and superimposed together as a multiplexed hologram. A modified Gerchberg–Saxton algorithm was used to improve image quality, and different images could be reconstructed when the multiplexed hologram was illuminated by corresponding reference light waves. We performed both numerical simulations and optical experiments to demonstrate the feasibility of the proposed scheme. Numerical simulations showed that the proposed method could reconstruct multiple images successfully by a single multiplexed hologram and optical experiments are consistently good with numerical simulations. It is expected that the proposed method has great potential to be widely applied in holographic displays in the future.


2009 ◽  
Author(s):  
José A. Domínguez-Caballero ◽  
Satoshi Takahashi ◽  
Sung Jin (James) Lee ◽  
George Barbastathis

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1358
Author(s):  
Taihui Wu ◽  
Jianshe Ma ◽  
Chengchen Wang ◽  
Haibei Wang ◽  
Liangcai Cao ◽  
...  

An optical encryption method based on computer generated holograms printing of photopolymer is presented. Fraunhofer diffraction is performed based on the Gerchberg-Saxton algorithm, and a hologram of the Advanced Encryption Standard encrypted Quick Response code is generated to record the ciphertext. The holograms of the key and the three-dimensional image are generated by the angular spectrum diffraction algorithm. The experimental results show that large-size encrypted Quick Response (QR) code and miniature keys can be printed in photopolymers, which has good application prospects in optical encryption. This method has the advantages of high-density storage, high speed, large fault tolerance, and anti-peeping.


Author(s):  
Johannes Bilz ◽  
Gianni Allevato ◽  
Janis Butz ◽  
Niklas Schafer ◽  
Christian Hatzfeld ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document