holographic displays
Recently Published Documents


TOTAL DOCUMENTS

144
(FIVE YEARS 43)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 12 (1) ◽  
pp. 293
Author(s):  
Rafał Kukołowicz ◽  
Maksymilian Chlipala ◽  
Juan Martinez-Carranza ◽  
Moncy Sajeev Idicula ◽  
Tomasz Kozacki

Near-eye holographic displays are the holy grail of wear-on 3D display devices because they are intended to project realistic wide-angle virtual scenes with parameters matching human vision. One of the key features of a realistic perspective is the ability to move freely around the virtual scene. This can be achieved by addressing the display with wide-angle computer-generated holograms (CGHs) that enable continuous viewpoint change. However, to the best of our knowledge there is no technique able to generate these types of content. Thus, in this work we propose an accurate and non-paraxial hologram update method for wide-angle CGHs that supports continuous viewpoint change around the scene. This method is based on the assumption that with a small change in perspective, two consecutive holograms share overlapping data. This enables reusing the corresponding part of the information from the previous view, eliminating the need to generate an entirely new hologram. Holographic information for the next viewpoint is calculated in two steps: first, a tool approximating the Angular Spectrum Propagation is proposed to generate the hologram data from previous viewpoint; and second, the efficient Phase Added Stereogram algorithm is utilized for generating the missing hologram content. This methodology offers fast and accurate calculations at the same time. Numerical and optical experiments are carried out to support the results of the proposed method.


2021 ◽  
Author(s):  
Manu Gopakumar ◽  
Jonghyun Kim ◽  
Suyeon Choi ◽  
Yifan Peng ◽  
Gordon Wetzstein

2021 ◽  
Vol 15 (9) ◽  
pp. 2170047
Author(s):  
Weitao Song ◽  
Xinan Liang ◽  
Shiqiang Li ◽  
Dongdong Li ◽  
Ramón Paniagua‐Domínguez ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 329
Author(s):  
Sabad-e- Gul ◽  
John Cassidy ◽  
Izabela Naydenova

The development of environmentally robust photosensitive materials for holographic recording is crucial for applications such as outdoor LED light redirection, holographic displays and holographic sensors. Despite the progress in holographic recording materials development, their sensitivity to humidity remains a challenge and protection from the environment is required. One approach to solving this challenge is to select substrate such as cellulose acetate, which is water resistant. This work reports the development of a cellulose-based photopolymer with sensitivity of 3.5 cm2/mJ and refractive index modulation of 2.5 × 10−3 achieved in the transmission mode of recording. The suitability for holographic recording was demonstrated by recording gratings with the spatial frequency of 800 linepairs/mm. The intensity dependence of the diffraction efficiency of gratings recorded in 70 μm thick layers was studied and it was observed that the optimum recording intensity was 10 mW/cm2. The robustness of the structures was studied after immersing the layer in water for one hour. It was observed that the diffraction efficiency and the surface characteristics measured before and after exposure to water remain unchanged. Finally, the surface hardness was characterized and was shown to be comparable to that of glass and significantly higher than the one of PVA-based acrylamide photopolymer.


2021 ◽  
Vol 11 (16) ◽  
pp. 7199
Author(s):  
Dapu Pi ◽  
Juan Liu

In this article, we propose a reference light wave multiplexing scheme to increase the information capacity of computer-generated holograms. The holograms were generated by different reference light waves and superimposed together as a multiplexed hologram. A modified Gerchberg–Saxton algorithm was used to improve image quality, and different images could be reconstructed when the multiplexed hologram was illuminated by corresponding reference light waves. We performed both numerical simulations and optical experiments to demonstrate the feasibility of the proposed scheme. Numerical simulations showed that the proposed method could reconstruct multiple images successfully by a single multiplexed hologram and optical experiments are consistently good with numerical simulations. It is expected that the proposed method has great potential to be widely applied in holographic displays in the future.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Yaniv Eliezer ◽  
Geyang Qu ◽  
Wenhong Yang ◽  
Yujie Wang ◽  
Hasan Yılmaz ◽  
...  

AbstractA metasurface hologram combines fine spatial resolution and large viewing angles with a planar form factor and compact size. However, it suffers coherent artifacts originating from electromagnetic cross-talk between closely packed meta-atoms and fabrication defects of nanoscale features. Here, we introduce an efficient method to suppress all artifacts by fine-tuning the spatial coherence of illumination. Our method is implemented with a degenerate cavity laser, which allows a precise and continuous tuning of the spatial coherence over a wide range, with little variation in the emission spectrum and total power. We find the optimal degree of spatial coherence to suppress the coherent artifacts of a meta-hologram while maintaining the image sharpness. This work paves the way to compact and dynamical holographic displays free of coherent defects.


Sign in / Sign up

Export Citation Format

Share Document