scholarly journals An efficient broad-band mid-wave IR fiber optic light source: design and performance simulation

2013 ◽  
Vol 21 (8) ◽  
pp. 9547 ◽  
Author(s):  
A. Barh ◽  
S. Ghosh ◽  
R. K. Varshney ◽  
B. P. Pal
Author(s):  
Xue Zhou ◽  
Jinmeng Xiang ◽  
Jiming Zheng ◽  
Xiaoqi Zhao ◽  
Hao Suo ◽  
...  

Near-infrared (NIR) phosphor-converted light-emitting diodes (pc-LEDs) light source have great potential in non-destructive detection, promoting plant growth and night vision applications, while the discovery of a broad-band NIR phosphor still...


1996 ◽  
Vol 67 (1) ◽  
pp. 79-84 ◽  
Author(s):  
C. M. Stellman ◽  
K. S. Booksh ◽  
J. E. Reddic ◽  
M. L. Myrick

2020 ◽  
Vol 501 (2) ◽  
pp. 2250-2267
Author(s):  
J Crass ◽  
A Bechter ◽  
B Sands ◽  
D King ◽  
R Ketterer ◽  
...  

ABSTRACT Enabling efficient injection of light into single-mode fibres (SMFs) is a key requirement in realizing diffraction-limited astronomical spectroscopy on ground-based telescopes. SMF-fed spectrographs, facilitated by the use of adaptive optics (AO), offer distinct advantages over comparable seeing-limited designs, including higher spectral resolution within a compact and stable instrument volume, and a telescope independent spectrograph design. iLocater is an extremely precise radial velocity (EPRV) spectrograph being built for the Large Binocular Telescope (LBT). We have designed and built the front-end fibre injection system, or acquisition camera, for the SX (left) primary mirror of the LBT. The instrument was installed in 2019 and underwent on-sky commissioning and performance assessment. In this paper, we present the instrument requirements, acquisition camera design, as well as results from first-light measurements. Broad-band SMF coupling in excess of 35 per cent (absolute) in the near-infrared (0.97–1.31 ${\mu {\rm m}}$) was achieved across a range of target magnitudes, spectral types, and observing conditions. Successful demonstration of on-sky performance represents both a major milestone in the development of iLocater and in making efficient ground-based SMF-fed astronomical instruments a reality.


Sign in / Sign up

Export Citation Format

Share Document