scholarly journals Holographic display method to suppress speckle noise based on effective utilization of two spatial light modulators

2019 ◽  
Vol 27 (8) ◽  
pp. 11617 ◽  
Author(s):  
Di Wang ◽  
Nan-Nan Li ◽  
Chao Liu ◽  
Qiong-Hua Wang
Photonics ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 204
Author(s):  
Di Wang ◽  
Yi-Wei Zheng ◽  
Nan-Nan Li ◽  
Qiong-Hua Wang

In this paper, a holographic system to suppress the speckle noise is proposed. Two spatial light modulators (SLMs) are used in the system, one of which is used for beam shaping, and the other is used for reproducing the image. By calculating the effective viewing angle of the reconstructed image, the effective hologram and the effective region of the SLM are calculated accordingly. Then, the size of the diffractive optical element (DOE) is calculated accordingly. The dynamic DOEs and effective hologram are loaded on the effective regions of the two SLMs, respectively, while the wasted areas of the two SLMs are performed with zero-padded operations. When the laser passes through the first SLM, the light can be modulated by the effective DOEs. When the modulated beam illuminates the second SLM which is loaded with the effective hologram, the image is reconstructed with better quality and lower speckle noise. Moreover, the calculation time of the hologram is reduced. Experiments indicate the validity of the proposed system.


2019 ◽  
Vol 453 ◽  
pp. 124311
Author(s):  
Nan-Nan Li ◽  
Di Wang ◽  
Chao Liu ◽  
Shu-Feng Lin ◽  
Qiong-Hua Wang

Science ◽  
2019 ◽  
Vol 364 (6445) ◽  
pp. 1087-1090 ◽  
Author(s):  
Shi-Qiang Li ◽  
Xuewu Xu ◽  
Rasna Maruthiyodan Veetil ◽  
Vytautas Valuckas ◽  
Ramón Paniagua-Domínguez ◽  
...  

Rapidly developing augmented reality, solid-state light detection and ranging (LIDAR), and holographic display technologies require spatial light modulators (SLMs) with high resolution and viewing angle to satisfy increasing customer demands. Performance of currently available SLMs is limited by their large pixel sizes on the order of several micrometers. Here, we propose a concept of tunable dielectric metasurfaces modulated by liquid crystal, which can provide abrupt phase change, thus enabling pixel-size miniaturization. We present a metasurface-based transmissive SLM, configured to generate active beam steering with >35% efficiency and a large beam deflection angle of 11°. The high resolution and steering angle obtained provide opportunities to develop the next generation of LIDAR and display technologies.


2019 ◽  
Vol 9 (10) ◽  
pp. 2012 ◽  
Author(s):  
Rujia Li ◽  
Liangcai Cao

Phase-only Spatial Light Modulator (SLM) is one of the most widely used devices for phase modulation. It has been successfully applied in the field with requirements of precision phase modulation such as holographic display, optical tweezers, lithography, etc. However, due to the limitations in the manufacturing process, the grayscale-phase response could be different for every single SLM device, even varying on sections of an SLM panel. A diverse array of calibration methods have been proposed and could be sorted into two categories: the interferometric phase calibration methods and the diffractive phase calibration methods. The principles of phase-only SLM are introduced. The main phase calibration methods are discussed and reviewed. The advantages of these methods are analyzed and compared. The potential methods for different applications are suggested.


2015 ◽  
Vol 11 (3) ◽  
pp. 278-284 ◽  
Author(s):  
N. Collings ◽  
J. L. Christmas ◽  
D. Masiyano ◽  
W. A. Crossland

Nanophotonics ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 2895-2904 ◽  
Author(s):  
Zhipeng Wang ◽  
Xiaowei Li ◽  
Lan Jiang ◽  
Bohong Li ◽  
Qunshuo Wei ◽  
...  

AbstractTo improve the efficiency of femtosecond laser direct writing, holographic femtosecond laser patterning using spatial light modulators has been widely used for the processing of micro/nanopatterns. However, the speckle noise of modulated optical fields severely limits the quality of fabricated patterns. We present a simple and effective method which involves interlacing a target pattern into a series of target subpatterns that consist of spaced spots to solve this problem. The separation of spots weakens the random interference between adjacent spots of optical fields, so the speckle noise reduces effectively, which improves the uniformity of the modulated optical fields and makes the fabricated patterns with high quality. With optimal interlacing numbers, complex micropattern arrays containing curved edges and sophisticated structures can be fabricated with superior quality and high efficiency. Binary holograms with improved optical characterization are realized by using the interlacing-pattern method, revealing the extensive potential of this method in micropattern processing and functional device fabrication with high quality and efficiency.


2010 ◽  
Vol 2010 ◽  
pp. 1-14 ◽  
Author(s):  
Damien P. Kelly ◽  
David S. Monaghan ◽  
Nitesh Pandey ◽  
Tomasz Kozacki ◽  
Aneta Michałkiewicz ◽  
...  

The application of digital holography as a viable solution to 3D capture and display technology is examined. A review of the current state of the field is presented in which some of the major challenges involved in a digital holographic solution are highlighted. These challenges include (i) the removal of the DC and conjugate image terms, which are features of the holographic recording process, (ii) the reduction of speckle noise, a characteristic of a coherent imaging process, (iii) increasing the angular range of perspective of digital holograms (iv) and replaying captured and/or processed digital holograms using spatial light modulators. Each of these challenges are examined theoretically and several solutions are put forward. Experimental results are presented that demonstrate the validity of the theoretical solutions.


Sign in / Sign up

Export Citation Format

Share Document