scholarly journals Deep learning-based detection scheme for visible light communication with generalized spatial modulation

2020 ◽  
Vol 28 (20) ◽  
pp. 28906
Author(s):  
Tengjiao Wang ◽  
Fang Yang ◽  
Jian Song
Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1232 ◽  
Author(s):  
Bao ◽  
Hsu ◽  
Tu

As an emerging wireless communication technique, visible light communication is experiencing a boom in the global communication field, and the dream of accessing to the Internet with light is fast becoming a reality. The objective of this study was to put forward an efficient and theoretical scheme that is based on generalized spatial modulation to reduce the bit error ratio in indoor short-distance visible light communication. The scheme was implemented while using two steps in parallel: (1) The multi-pulse amplitude and the position modulation signal were generated by combining multi-pulse amplitude modulation with multi-pulse position modulation using transmitted information, and (2) certain light-emitting diodes were activated by employing the idea of generalized spatial modulation to convey the generated multi-pulse amplitude and position modulation optical signals. Furthermore, pulse width modulation was introduced to achieve dimming control in order to improve anti-interference ability to the ambient light of the system. The two steps above involved the information theory of communication. An embedded hardware system, which was based on the C8051F330 microcomputer and included a transmitter and a receiver, was designed to verify the performance of this new scheme. Subsequently, the verifiability experiment was carried out. The results of this experiment demonstrated that the proposed theoretical scheme of transmission was feasible and could lower the bit error ratio (BER) in indoor short-distance visible light communication while guaranteeing indoor light quality.


Photonics ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 85 ◽  
Author(s):  
Arslan Khalid ◽  
Hafiz Muhammad Asif ◽  
Konstantin I. Kostromitin ◽  
Sattam Al-Otaibi ◽  
Kazi Mohammed Saidul Huq ◽  
...  

Visible Light Communication (VLC) is a data communication technology that modulates the intensity of the light to transmit the information mostly by means of Light Emitting Diodes (LEDs). The data rate is mainly throttled by the limited bandwidth of the LEDs. To combat, Multi-carrier Code Division Multiple Access (MC-CDMA) is a favorable technique for achieving higher data rates along with reduced Inter-Symbol Interference (ISI) and easy access to multi-users at the cost of slightly reduced compromised spectral efficiency and Multiple Access Interference (MAI). In this article, a multi-user VLC system is designed using a Discrete Wavelet Transform (DWT) that eradicates the use of cyclic prefix due to the good orthogonality and time-frequency localization properties of wavelets. Moreover, the design also comprises suitable signature codes, which are generated by employing double orthogonality depending upon Walsh codes and Wavelet Packets. The proposed multi-user system is simulated in MATLAB software and its overall performance is assessed using line-of-sight (LoS) and non-line-of-sight (NLoS) configurations. Furthermore, two sub-optimum multi-users detection schemes such as zero forcing (ZF) and minimum-mean-square-error (MMSE) are also used at the receiver. The simulated results illustrate that the doubly orthogonal signature waveform-based DWT-MC-CDMA with MMSE detection scheme outperforms the Walsh code-based multi-user system.


Photonics ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 453
Author(s):  
Pu Miao ◽  
Weibang Yin ◽  
Hui Peng ◽  
Yu Yao

The inherent impairments of visible light communication (VLC) in terms of nonlinearity of light-emitting diode (LED) and the optical multipath restrict bit error rate (BER) performance. In this paper, a model-driven deep learning (DL) equalization scheme is proposed to deal with the severe channel impairments. By imitating the block-by-block signal processing block in orthogonal frequency division multiplexing (OFDM) communication, the proposed scheme employs two subnets to replace the signal demodulation module in traditional system for learning the channel nonlinearity and the symbol de-mapping relationship from the training data. In addition, the conventional solution and algorithm are also incorporated into the system architecture to accelerate the convergence speed. After an efficient training, the distorted symbols can be implicitly equalized into the binary bits directly. The results demonstrate that the proposed scheme can address the overall channel impairments efficiently and can recover the original symbols with better BER performance. Moreover, it can still work robustly when the system is complicated by serious distortions and interference, which demonstrates the superiority and validity of the proposed scheme in channel equalization.


Sign in / Sign up

Export Citation Format

Share Document