scholarly journals An Efficient Data Transmission with GSM-MPAPM Modulation for an Indoor VLC System

Symmetry ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1232 ◽  
Author(s):  
Bao ◽  
Hsu ◽  
Tu

As an emerging wireless communication technique, visible light communication is experiencing a boom in the global communication field, and the dream of accessing to the Internet with light is fast becoming a reality. The objective of this study was to put forward an efficient and theoretical scheme that is based on generalized spatial modulation to reduce the bit error ratio in indoor short-distance visible light communication. The scheme was implemented while using two steps in parallel: (1) The multi-pulse amplitude and the position modulation signal were generated by combining multi-pulse amplitude modulation with multi-pulse position modulation using transmitted information, and (2) certain light-emitting diodes were activated by employing the idea of generalized spatial modulation to convey the generated multi-pulse amplitude and position modulation optical signals. Furthermore, pulse width modulation was introduced to achieve dimming control in order to improve anti-interference ability to the ambient light of the system. The two steps above involved the information theory of communication. An embedded hardware system, which was based on the C8051F330 microcomputer and included a transmitter and a receiver, was designed to verify the performance of this new scheme. Subsequently, the verifiability experiment was carried out. The results of this experiment demonstrated that the proposed theoretical scheme of transmission was feasible and could lower the bit error ratio (BER) in indoor short-distance visible light communication while guaranteeing indoor light quality.

2018 ◽  
Vol 7 (4) ◽  
pp. 2822 ◽  
Author(s):  
Abdelhalim Zekry ◽  
Christena Ghandour ◽  
Nazmi A. Mohammed ◽  
S El-Rabaie

This work enhances the bit rate characteristics, receiver sensitivity and power requirements of multicarrier modulation schemes (MCM) for visible light communication (VLC) dimming control system at bit error rate (BER) less than 10-3. This study develops the mathematical formulation for merging pulse position modulation (PPM) and overlapping pulse position modulation (OPPM) with M-ary quadrature amplitude modulation DC-Biased optical orthogonal frequency division multiplexing (M-QAM DCO OFDM), which can achieve efficient data transmission while maintaining communication quality. These schemes are then compared with the conventional merging (i.e M-QAM DCO OFDM with pulse width modulation (PWM)). Relating to the recent advances in the field, the additional comparative study is established with the latest merging platform (i.e. M-QAM DCO OFDM with multiple pulse position modulation (MPPM)). 


2019 ◽  
Vol 9 (6) ◽  
pp. 1147
Author(s):  
Baolong Li ◽  
Xiaomei Xue ◽  
Qiong Wu ◽  
Yang Liu ◽  
Guilu Wu ◽  
...  

In multiuser visible light communication (VLC) systems, many transmit precoding (TPC) techniques have been investigated to suppress multiuser interference. However, these conventional works restrict their modulation to the special case of zero mean, which inherently limits their application to some popular modulations associated with the non-zero mean in VLC, such as pulse position modulation (PPM). Since the modulation with non-zero mean leads to more intricate optical power constraints and design objective functions than the case of zero mean, the TPC design that can support a general modulation is still an open problem. In the paper, we conceive of a general solution of the TPC scheme combined with dimming control for multiuser VLC systems, which is capable of mitigating multiuser interference, while at the same time, achieving the desired dimming level. The proposed scheme is applicable to a wide range of modulations in VLC, such as pulse amplitude modulation (PAM), PPM, and so on. Simulation results demonstrate that the proposed scheme outperforms the traditional pseudo-inverse-based zero-forcing TPC in terms of bit error rate (BER).


Sensors ◽  
2020 ◽  
Vol 20 (11) ◽  
pp. 3190 ◽  
Author(s):  
Sebastian-Andrei Avătămăniței ◽  
Alin-Mihai Căilean ◽  
Adrian Done ◽  
Mihai Dimian ◽  
Valentin Popa ◽  
...  

As the interest toward communication-based vehicle safety applications is increasing, the development of secure wireless communication techniques has become an important research area. In this context, the article addresses issues that are related to the use of the visible light communication (VLC) technology in vehicular applications. Thus, it provides an extensive presentation concerning the main challenges and issues that are associated to vehicular VLC applications and of some of the existing VLC solutions. Moreover, the article presents the aspects related to the design and intensive experimental evaluation of a new automotive VLC system. The experimental evaluation performed in indoor and outdoor conditions shows that the proposed system can achieve communication distances up to 50 m and bit error ratio (BER) lower than 10−6, while being exposed to optical and weather perturbations. This article provides important evidence concerning the snowfall effect on middle to long range outdoor VLC, as the proposed VLC system was also evaluated in snowfall conditions. Accordingly, the experimental evaluation showed that snowfall and heavy gust could increase bit error rate by up to 10,000 times. Even so, this article provides encouraging evidence that VLC systems will soon be able to reliably support V2X communications.


2018 ◽  
Vol 412 ◽  
pp. 172-177 ◽  
Author(s):  
Danyang Chen ◽  
Jianping Wang ◽  
Jianli Jin ◽  
Huimin Lu ◽  
Lifang Feng

Author(s):  
T. Cogalan ◽  
H. Haas ◽  
E. Panayirci

Visible light communication (VLC) systems are inherently signal-to-noise ratio (SNR) limited due to link budget constraints. One favourable method to overcome this limitation is to focus on the pre-log factors of the channel capacity. Multiple-input multiple-output (MIMO) techniques are therefore a promising avenue of research. However, inter-channel interference in MIMO limits the achievable capacity. Spatial modulation (SM) avoids this limitation. Furthermore, the performance of MIMO systems in VLC is limited by the similarities among spatial channels. This limitation becomes particularly severe in intensity modulation/direct detection (IM/DD) systems because of the lack of phase information. The motivation of this paper is to propose a system that results in a multi-channel transmission system that enables reliable multi-user optical MIMO SM transmission without the need for a precoder, power allocation algorithm or additional optics at the receiver. A general bit error performance model for the SM system is developed for an arbitrary number of light-emitting diodes (LEDs) in conjunction with pulse amplitude modulation. Based on this model, an LED array structure is designed to result in spatially separated multiple channels by manipulating the transmitter geometry. This article is part of the theme issue ‘Optical wireless communication’.


Author(s):  
Daniel G. Holmes ◽  
Ling Cheng ◽  
Mulundumina Shimaponda-Nawa ◽  
Ayokunle D. Familua ◽  
Adnan M. Abu-Mahfouz

Sign in / Sign up

Export Citation Format

Share Document