Generalized Soft Failure Identification enabled by Digital Residual Spectrum and Autoencoder

2021 ◽  
Author(s):  
Kaixuan Sun ◽  
Zhenming Yu ◽  
Liang Shu ◽  
Zhiquan Wan ◽  
Kun Xu
Author(s):  
Chuan Zhang ◽  
Yinzhe Ma ◽  
Gregory Dabney ◽  
Oh Chong Khiam ◽  
Esther P.Y. Chen

Abstract Soft failures are among the most challenging yield detractors. They typically show test parameter sensitive characteristics, which would pass under certain test conditions but fail under other conditions. Conductive-atomic force microscopy (CAFM) emerged as an ideal solution for soft failure analysis that can balance the time and thoroughness. By inserting CAFM into the soft failure analysis flow, success rate of such type of analysis can be significantly enhanced. In this paper, a logic chain soft failure and a SRAM local bitline soft failure are used as examples to illustrate how this failure analysis methodology provides a powerful and efficient solution for soft failure analysis.


Author(s):  
Isiaka Ajewale Alimi

Digital hearing aids addresses the issues of noise and speech intelligibility that is associated with the analogue types. One of the main functions of the digital signal processor (DSP) of digital hearing aid systems is noise reduction which can be achieved by speech enhancement algorithms which in turn improve system performance and flexibility. However, studies have shown that the quality of experience (QoE) with some of the current hearing aids is not up to expectation in a noisy environment due to interfering sound, background noise and reverberation. It is also suggested that noise reduction features of the DSP can be further improved accordingly. Recently, we proposed an adaptive spectral subtraction algorithm to enhance the performance of communication systems and address the issue of associated musical noise generated by the conventional spectral subtraction algorithm. The effectiveness of the algorithm has been confirmed by different objective and subjective evaluations. In this study, an adaptive spectral subtraction algorithm is implemented using the noise-estimation algorithm for highly non-stationary noisy environments instead of the voice activity detection (VAD) employed in our previous work due to its effectiveness. Also, signal to residual spectrum ratio (SR) is implemented in order to control the amplification distortion for speech intelligibility improvement. The results show that the proposed scheme gives comparatively better performance and can be easily employed in digital hearing aid system for improving speech quality and intelligibility.


Author(s):  
Kayol S. Mayer ◽  
Jonathan A. Soares ◽  
Rossano P. Pinto ◽  
Christian E. Rothenberg ◽  
Dalton S. Arantes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document