Facet Coating Design Robustness

Author(s):  
Daniel Poitras
Keyword(s):  
Solar Energy ◽  
2015 ◽  
Vol 122 ◽  
pp. 76-86 ◽  
Author(s):  
Sueda Saylan ◽  
Timothy Milakovich ◽  
Sabina Abdul Hadi ◽  
Ammar Nayfeh ◽  
Eugene A. Fitzgerald ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 454
Author(s):  
Bo Yu ◽  
Ya Liu ◽  
Lianqi Wei ◽  
Xiaomeng Zhang ◽  
Yingchao Du ◽  
...  

In this paper, a mechanism of anti-oxidation coating design based on the inhibition effect of the interface layer on the diffusion of ions within oxide scale was introduced. The Fe2+ ions diffusion behavior in Fe3O4, Cr2FeO4, and FeAl2O4 were studied by molecular dynamics method of Nudged elastic bond. As the result shown, Fe2+ ions tended to diffuse through the vacancy at tetrahedral site in Cr2FeO4 and FeAl2O4, but diffuse through the octahedral vacancy in Fe3O4. When temperature ranged from 1073 to 1325 K, the energy barrier of Fe2+ ions diffusion in Cr2FeO4 was higher than that of FeAl2O4, and both of that were still obvious higher than that in Fe3O4. A new anti-oxidation coating was prepared based on the inhibition of interface layer consisted of FeAl2O4 to protect the carbon steel S235JR at 1200 °C for 2 h. The FeAl2O4 region was formed and observed at the interface between coating and Fe element diffusion area, and the mullite phase was distributed outside of the FeAl2O4 region. Comparing to the bare sample, the prepared coating exhibited an excellent anti-oxidation effect.


Coatings ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 841
Author(s):  
Yanmei Liu ◽  
Tie-Gang Wang ◽  
Wei Lin ◽  
Qiang Zhu ◽  
Bing Yan ◽  
...  

Aluminum rich nitride coatings are often used to protect cutting tools and prolong their service life. In this work, a preoxidation technique and duplex coating design were combined to further improve the bearing capacity and heat resistance of cutting tools. The Al-Cr-Si-N, Al-Cr-Si-O-N, and Al-Cr-Si-N/Al-Cr-Si-O-N duplex coatings were developed by arc ion plating, respectively. The morphology, phase constituents, mechanical and tribological properties of the coatings were characterized and tested by SEM, XRD, a micro-hardness tester, scratch tester, and tribometer. The results showed the coating became more compact and smoother after oxygen doping. However, the Al-Cr-Si-N coating presented the best mechanical properties and tribological behaviors. Its hardness and critical load showed the highest values, which were about 4000 HV and 81 N, respectively. A friction coefficient of 0.67 and wear rate of 1.4 × 10−3 μm3/N·mm were also the lowest values in the study. The three coatings were deposited on the same solid carbide end mills and performed the cutting tests under same conditions. By comparison, the Al-Cr-Si-N coated tool presented the longest tool life and minimum cutting force when cutting C1045 medium-carbon steel. After 90 min of dry milling, the width of the flank wear band (VB) of the AlCrSiN coated tool reached 135 μm, which was much lower than that of the other two coated tools.


2006 ◽  
Vol 45 (7) ◽  
pp. 1530 ◽  
Author(s):  
Alexander V. Tikhonravov ◽  
Michael K. Trubetskov ◽  
Tatiana V. Amotchkina ◽  
Alfred Thelen

2003 ◽  
Vol 423-425 ◽  
pp. 763-768 ◽  
Author(s):  
Jin Sheng Xiao ◽  
Chun Zhi Hu ◽  
Dong Zhou Cui ◽  
Yun Hua Guo

2021 ◽  
Author(s):  
Rajaram Dhole ◽  
Ismael Ripoll ◽  
Sabesan Rajaratnam ◽  
Celine Jablonski

Abstract Pipelines are coated with insulating material that minimizes heat losses to the environment. Reeled pipe can experience nominal bending strain in the order of 1% to 2%. Thick coating on the pipe is inherently more highly strained, because of concentrations that occur at the interface between parent coating and field joint coating. Occasionally, contractors who specialize in pipe-lay using the reeling method have experienced difficulties relating to unexpected disbondment and cracks in coating at these interfaces. Any disbonded coating is routinely identified and repaired, but it is important to understand the influential factors that could lead to this type of coating disbondment. It is known in the industry that parameters such as temperature, reeling speed and pipe tension are influential but the relative influence of the factors is not well understood. In addition, there is currently no industry code or recommended practice that proposes the strain levels that the coating could safely withstand prior to cracking. This paper addresses thermo-mechanical aspects of coating design and presents a novel approach to quantify which parameters have the largest influence. In the presented assessments, coating strain was assessed using finite element analysis. Material input was selected from a combination of typical values and specific laboratory test results for polypropylene (PP) and injection molded polypropylene (IMPP). An essential aspect was that the mechanical and thermal properties of the PP were related to temperature and strain rate. Strain rates in the coating during reeling operations were obtained from global FE models. Detailed local FE models incorporated all the material and load inputs and temperature conditions that are necessary to determine peak strain values in the coating; the peak strain values would indicate the locations of potential coating disbondment. The study is purely a strain assessment and excludes any potential for defects or delamination in the coating that could result from its manufacturing process. This strain-based study revealed that coating temperature during reeling is the most influential factor on strain level in the coating. Reeling speed and pipe tension are parameters providing secondary influences.


Sign in / Sign up

Export Citation Format

Share Document