Effect of Temperature, Reeling Speed and Pipe Tension on the Performance of Field Joint Coating During Reeling of Offshore Pipelines

2021 ◽  
Author(s):  
Rajaram Dhole ◽  
Ismael Ripoll ◽  
Sabesan Rajaratnam ◽  
Celine Jablonski

Abstract Pipelines are coated with insulating material that minimizes heat losses to the environment. Reeled pipe can experience nominal bending strain in the order of 1% to 2%. Thick coating on the pipe is inherently more highly strained, because of concentrations that occur at the interface between parent coating and field joint coating. Occasionally, contractors who specialize in pipe-lay using the reeling method have experienced difficulties relating to unexpected disbondment and cracks in coating at these interfaces. Any disbonded coating is routinely identified and repaired, but it is important to understand the influential factors that could lead to this type of coating disbondment. It is known in the industry that parameters such as temperature, reeling speed and pipe tension are influential but the relative influence of the factors is not well understood. In addition, there is currently no industry code or recommended practice that proposes the strain levels that the coating could safely withstand prior to cracking. This paper addresses thermo-mechanical aspects of coating design and presents a novel approach to quantify which parameters have the largest influence. In the presented assessments, coating strain was assessed using finite element analysis. Material input was selected from a combination of typical values and specific laboratory test results for polypropylene (PP) and injection molded polypropylene (IMPP). An essential aspect was that the mechanical and thermal properties of the PP were related to temperature and strain rate. Strain rates in the coating during reeling operations were obtained from global FE models. Detailed local FE models incorporated all the material and load inputs and temperature conditions that are necessary to determine peak strain values in the coating; the peak strain values would indicate the locations of potential coating disbondment. The study is purely a strain assessment and excludes any potential for defects or delamination in the coating that could result from its manufacturing process. This strain-based study revealed that coating temperature during reeling is the most influential factor on strain level in the coating. Reeling speed and pipe tension are parameters providing secondary influences.

2017 ◽  
Vol 54 (7) ◽  
pp. 1013-1033 ◽  
Author(s):  
Marco D’Ignazio ◽  
Tim Tapani Länsivaara ◽  
Hans Petter Jostad

The railway network on coastal areas of Finland is predominantly located in soft clay areas. The undrained shear strength of such clays is generally low, highly anisotropic, and rate dependent, and it exhibits post-peak strain softening under undrained conditions. A full-scale failure test was performed by Tampere University of Technology in Perniö, Western Finland, in 2009. A shallow railway embankment built on a soft clay deposit was equipped with a loading structure and loaded to failure in about 30 h. The embankment collapsed 2 h after the last loading step. In this study, data collected from the experiment are used, together with laboratory test results on high-quality samples, to conduct advanced finite element analysis of the Perniö failure test. The NGI-ADPSoft model is used for this purpose, which is capable of simulating the strain-softening behavior of the clay. Even though the observed rate effect is not taken into account in the analyses, the failure load can be predicted reasonably well. Good agreement is also observed for calculated displacements and failure mechanism with experimental observations.


2021 ◽  
pp. 1-16
Author(s):  
FRANCISCO GUIL ◽  
M. ÁNGELES SORIA ◽  
VÍCTOR ORTEGA ◽  
RUBÉN GARCÍA-SÁNCHEZ ◽  
SILVIA VILLAVERDE-MORCILLO

Summary Avian species often take advantage of human-made structures, such as perching on power poles, although this can lead to negative effects for both birds and infrastructure. It has been demonstrated that anchor-type pylons, with strain insulators, are amongst the most dangerous of these structures. Our goal was to develop a methodological approach to evaluate the ways in which raptors perch on the six most commonly used strain insulator configurations in Spain, and to build a risk index that can be used to prioritise them. To study the ways raptors perch, we worked with six wildlife rescue centres in central Spain for almost a year assessing these six strain insulator configurations in 83 perch trials with 176 raptors in ample flying pens. We analysed 475 complete survey days, with an approximate number of 258,960 analysed pictures, including 6,766 perchings on strain insulators. We assessed the influential factors for these 6,766 perchings and developed a novel approach to prioritise strain insulator configurations that can be used anywhere. Our results suggest that longer insulator strains (i.e. PECA-1000 and Caon-C3670) are the safest, according to our prioritization criteria, although these results require further assessment in the field. Managers and conservationists should take into account these results to improve management and conservation actions.


2021 ◽  
Vol 6 (5) ◽  
pp. 62
Author(s):  
John Morris ◽  
Mark Robinson ◽  
Roberto Palacin

The ‘short’ neutral section is a feature of alternating current (AC) railway overhead line electrification that is often unreliable and a source of train delays. However hardly any dynamic analysis of its behaviour has been undertaken. This paper briefly describes the work undertaken investigating the possibility of modelling the behaviour using a novel approach. The potential for thus improving the performance of short neutral sections is evaluated, with particular reference to the UK situation. The analysis fundamentally used dynamic simulation of the pantograph and overhead contact line (OCL) interface, implemented using a proprietary finite element analysis tool. The neutral section model was constructed using physical characteristics and laboratory tests data, and was included in a validated pantograph/OCL simulation model. Simulation output of the neutral section behaviour has been validated satisfactorily against real line test data. Using this method the sensitivity of the neutral section performance in relation to particular parameters of its construction was examined. A limited number of parameter adjustments were studied, seeking potential improvements. One such improvement identified involved the additional inclusion of a lever arm at the trailing end of the neutral section. A novel application of pantograph/OCL dynamic simulation to modelling neutral section behaviour has been shown to be useful in assessing the modification of neutral section parameters.


2002 ◽  
Vol 737 ◽  
Author(s):  
D. Sarangi ◽  
A. Karimi

ABSTRACTCarbon nanotubes on metallic wires may be act as electrode for the field emission (FE) luminescent devices. Growing nanotubes on metallic wires with controlled density, length and alignment are challenging issues for this kind of devices. We, in the present investigation grow carbon nanotubes directly on the metal wires by a powerful but simple technique. A novel approach has been proposed to align nanotubes during growth. Methane, acetylene and dimethylamine have been used as source gases. With the same growth conditions (viz. pressure, growth temperature and plasma) methane does not produce any nanotube but nanotubes grown with dimethylamine show shorter length and radius than acetylene. The effect of temperature to control the radius, time to control the density, plasma conditions to align the nanotubes has been focused. Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM) and Rutherford Back Scattering (RBS) are used to characterize the nanotubes.


2021 ◽  
Vol 891 ◽  
pp. 150-163
Author(s):  
Jorge Mauricio Fuentes ◽  
Omar Flor Unda ◽  
Santiago Ferrandiz ◽  
Franyelit Suarez

In this article presents evidence about performance of mechanical properties of polycarbonate and nylon materials, which are used in the additive manufacturing by deposition of molten material and that have been subjected to sterilization processes by moist heat at 121°C and dry heat at 140°C. This study provides useful information to consider the use of these materials in sanitary and sterile settings. Mechanical tests of tensile, flex, hardness, Izod impact, thermal tests in Differential Scanning Calorimetry DSC, Thermomechanical analysis TMA and Scanning Electron Microscopy SEM were performed. It is concluded that the mechanical and thermal properties have not been altered through the effect of temperature in sterilization processes.


2016 ◽  
Vol 10 (1) ◽  
pp. 1-20
Author(s):  
Serena Aktar

This is an empirical and quantitative study conducted on small scale live entrepreneurs and potential entrepreneurs of university level students of Bangladesh. The main purpose of this study is to identify and examine the factors influencing decision of becoming an entrepreneur. For fulfilling the study purpose, by using simple random sampling technique a total of 600 questionnaires were administered; 300 were distributed to the students who were interested to become entrepreneurs and 300 questionnaires were also distributed to small scale live entrepreneurs who formed their business during the last two years and more. Data were analyzed according to objectivity. The results indicated that need for achievement is highly influential factor in picking up decision of becoming an entrepreneur of potential entrepreneurs of university level students and family business background is the main influential factor in taking decision of becoming an entrepreneur of the small scale live entrepreneurs. Parallel factors, e.g., locus of control, risk taking propensity and proactive personality also acted as the influential factors of creating entrepreneurial affinity in both of them.Journal of Business and Technology (Dhaka) Vol.10(1) 2015; 1-20


Agrologia ◽  
2018 ◽  
Vol 7 (1) ◽  
Author(s):  
Silwanus M Talakua ◽  
Rafael M Osok

Land use is the most influential factor in soil degradation due to erosion. The objectives of this research are to know the level of land degradation and the factors that influence the land use area, the upper vegetation density and the lower vegetation density. This research uses the method of measuring ground damage indicator in the field. The results showed that single, wide land use, upper vegetation density and lower vegetation density had an effect on soil degradation on mixed garden land use; while simultaneously, wide land use, upper vegetation density and lower vegetation density have an effect on soil degradation on mixed garden land use. The most influential factors for soil degradation in mixed gardens are the area of land use and lower vegetation density.Keyword:  Degradation of soil, land, vegetation density, mixed gardens.


2020 ◽  
Vol 27 (1) ◽  
pp. 1-5
Author(s):  
Hanadi Naji ◽  
Nibras Khalid ◽  
Mutaz Medhlom

This paper aims at presenting and discussing the numerical studies performed to estimate the mechanical and thermal behavior of RC flat slabs at elevated temperature and fire. The numerical analysis is carried out using finite element programs by developing models to simulate the performance of the buildings subjected to fire. The mechanical and thermal properties of the materials obtained from the experimental work are involved in the modeling that the outcomes will be more realistic. Many parameters related to fire resistance of the flat slabs have been studied and the finite element analysis results reveal that the width and thickness of the slab, the temperature gradient, the fire direction, the exposure duration and the thermal restraint are important factors that influence the vertical deflection, bending moment and force membrane of the flat slabs exposed to fire. However, the validation of the models is verified by comparing their results to the available experimental date. The finite element modeling contributes in saving cost and time consumed by experiments.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Xuelian Gu ◽  
Yongxiang Qi ◽  
Arthur G. Erdman

A computational evaluation approach to the wall apposition of a cerebral mechanical emboli retrieval device (MERD) is presented. The typical enclosed multilattice structure, manufactured from the thin-walled Nitinol tube, consists of repeated “V”-shaped unit cells. During interventional thrombectomy, the MERD system is delivered inside an artery stenosis segment to capture emboli and restore cerebral blood flow. The wall apposition, which deteriorates during embolus capture, occurs during system migration along the tortuous intracranial vessel. The commercial finite element analysis (FEA) solver ABAQUS 6.10 Standard and user subroutine (UMAT/Nitinol) are utilized to study the ability to remain in close contact with the curved vessel wall during migration. In this numerical analysis, the influence of the contacting interference loadings on structure deformation and strain field distribution is obtained and analyzed. The results indicate that the middle segment of the MERD seriously contracts or collapses inside the curved vessel. In addition, the peak strain is in the apex flow-prone region and maintains at the safe range.


Sign in / Sign up

Export Citation Format

Share Document