Tunable-optical-filter-based white-light interferometry for sensing

2005 ◽  
Vol 30 (12) ◽  
pp. 1452 ◽  
Author(s):  
Bing Yu ◽  
Anbo Wang ◽  
Gary Pickrell ◽  
Juncheng Xu
2002 ◽  
Vol 722 ◽  
Author(s):  
T. S. Sriram ◽  
B. Strauss ◽  
S. Pappas ◽  
A. Baliga ◽  
A. Jean ◽  
...  

AbstractThis paper describes the results of extensive performance and reliability characterization of a silicon-based surface micro-machined tunable optical filter. The device comprises a high-finesse Fabry-Perot etalon with one flat and one curved dielectric mirror. The curved mirror is mounted on an electrostatically actuated silicon nitride membrane tethered to the substrate using silicon nitride posts. A voltage applied to the membrane allows the device to be tuned by adjusting the length of the cavity. The device is coupled optically to an input and an output single mode fiber inside a hermetic package. Extensive performance characterization (over operating temperature range) was performed on the packaged device. Parameters characterized included tuning characteristics, insertion loss, filter line-width and side mode suppression ratio. Reliability testing was performed by subjecting the MEMS structure to a very large number of actuations at an elevated temperature both inside the package and on a test board. The MEMS structure was found to be extremely robust, running trillions of actuations without failures. Package level reliability testing conforming to Telcordia standards indicated that key device parameters including insertion loss, filter line-width and tuning characteristics did not change measurably over the duration of the test.


1992 ◽  
Vol 28 (6) ◽  
pp. 553 ◽  
Author(s):  
S. Chen ◽  
A.W. Palmer ◽  
K.T.V. Grattan ◽  
B.T. Meggitt

Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2486
Author(s):  
Gert Behrends ◽  
Dirk Stöbener ◽  
Andreas Fischer

Lateral scanning white light interferometry (LSWLI) is a promising technique for high-resolution topography measurements on moving surfaces. To achieve resolutions typically associated with white light interferometry, accurate information on the lateral displacement of the measured surface is essential. Since the uncertainty requirement for a respective displacement measurement is currently not known, Monte Carlo simulations of LSWLI measurements are carried out at first to assess the impact of the displacement uncertainty on the topography measurement. The simulation shows that the uncertainty of the displacement measurement has a larger influence on the total height uncertainty than the uncertainty of the displacing motion itself. Secondly, a sufficiently precise displacement measurement by means of digital speckle correlation (DSC) is proposed that is fully integrated into the field of view of the interferometer. In contrast to externally applied displacement measurement systems, the integrated combination of DSC with LSWLI needs no synchronization and calibration, and it is applicable for translatory as well as rotatory scans. To demonstrate the findings, an LSWLI setup with integrated DSC measurements is realized and tested on a rotating cylindrical object with a surface made of a linear encoder strip.


1995 ◽  
Vol 114 (5-6) ◽  
pp. 386-392 ◽  
Author(s):  
L.A Ferreira ◽  
J.L Santos ◽  
F Farahi

1994 ◽  
Vol 19 (2) ◽  
pp. 138 ◽  
Author(s):  
R. R. Gauthier ◽  
N. Dahi ◽  
F. Farahi

2014 ◽  
Vol 26 (21) ◽  
pp. 2138-2141 ◽  
Author(s):  
Zhen Wang ◽  
Yi Jiang ◽  
Wenhui Ding ◽  
Ran Gao

1994 ◽  
Vol 30 (17) ◽  
pp. 1440-1441 ◽  
Author(s):  
Y.J. Rao ◽  
D.A. Jackson

Sign in / Sign up

Export Citation Format

Share Document