Real-time IBFD transmission system based on adaptive optical self-interference cancellation using the hybrid criteria regular triangle algorithm

2021 ◽  
Vol 46 (5) ◽  
pp. 1069
Author(s):  
Zhiyi Zhang ◽  
Lizhuo Zheng ◽  
Shilin Xiao ◽  
Zhiyang Liu ◽  
Jiafei Fang ◽  
...  
2021 ◽  
Author(s):  
Yifeng Tang ◽  
Jason Rodgers ◽  
James McCallum ◽  
Yijing Zhang ◽  
Yuji Fujii

Author(s):  
Ken T. Murata ◽  
Takamichi Mizuhara ◽  
Praphan Pavarangkoon ◽  
Kazunori Yamamoto ◽  
Kazuya Muranaga ◽  
...  

2014 ◽  
Vol 543-547 ◽  
pp. 891-894
Author(s):  
Lian Jun Zhang ◽  
Shi Jie Liu

The bus video monitoring system is composed by WCDMA transmission system, video server system, system monitoring center and outreach system. By WCDMA wireless transmission module achieving real time video data return, while using VPDN network technology. Using of the DVS video server and by WCDMA transmission system, the monitoring videos information will be transmitted to the monitoring center rapidly and in real time. The monitoring center can remotely monitor, manage, and dispatch the bus. The results demonstrating this system has good real time transmission ability.


2021 ◽  
Author(s):  
Graciela Eva Naveda ◽  
France Dominique Louie ◽  
Corinna Locatelli ◽  
Julien Davard ◽  
Sara Fragassi ◽  
...  

Abstract Natural gas has become one of the major sources of energy for homes, public buildings and businesses, therefore gas storage is particularly important to ensure continuous provision compensating the differences between supply and demand. Stogit, part of Snam group, has been carrying out gas storage activities since early 1960's. Natural gas is usually stored underground, in large storage reservoirs. The gas is injected into the porous rock of depleted reservoirs bringing the reservoir nearby to its original condition. Injected gas can be withdrawn depending on the need. Gas market demands for industries and homes in Italy are mostly guaranteed from those Stogit reservoirs even in periods when imports are in crisis. Typically, from April to October, the gas is injected in these natural reservoirs that are "geologically tested"; while from November to March, gas is extracted from the same reservoirs and pumped into the distribution networks to meet the higher consumer demand.  Thirty-eight (38) wells, across nine (9) depleted fields, are completed with downhole quartz gauges and some of them with fiber-optics gauges. Downhole gauges are installed to continuously measure and record temperature and pressure from multiple reservoirs. The Real Time data system installed for 29 wells is used to collect, transmit and make available downhole data to Stogit (Snam) headquarter office. Data is automatically collected from remote terminal units (RTUs) and transferred over Stogit (Snam) network. The entire system works autonomously and has the capability of being remotely managed from anywhere over the corporate Stogit (Snam) IT network. Historical trends, including fiber optics gauges ones, are visualized and data sets could be retrieved using a fast and user-friendly software that enables data import into interpretation and reservoir modeling software. The use of this data collection and transmission system, versus the traditional manual download, brought timely data delivery to multiple users, coupled with improved personnel safety since land travels were eliminated. The following pages describe the case study, lessons learned, and integrated new practices used to improve the current and future data transmission deployments.


Sign in / Sign up

Export Citation Format

Share Document