scholarly journals Deep-learning based denoising and reconstruction of super-resolution structured illumination microscopy images

2021 ◽  
Author(s):  
ZAFRAN HUSSAIN SHAH ◽  
Marcel Müller ◽  
TUNG-CHENG WANG ◽  
Philip Scheidig ◽  
Axel Schneider ◽  
...  
Author(s):  
Nihar Das ◽  
Nisarg Sharma ◽  
Vaishnavi Shebare ◽  
Parth Dawda ◽  
Prajakta Gourkhede ◽  
...  

With the ever-growing field of microscopy there is pretty much a necessity of high - resolution microscopic images. A microscope may have powerful magnifying lenses, but if the resolution is poor, the magnified image is just blur and no useful insights can be gained from such images. Traditional techniques like Structured Illumination Microscopy (SIM) are not feasible enough for proper use and current solutions based on deep learning assume that the input image is noise free. Based on our research and existing applications related to deep learning-based image enhancement, our proposed solution of deep learning based General Adversarial Network (GAN), will help jointly denoise and super-resolved microscopy images. Thus, this project has competitive applications in different research areas including biomedical microscopy, medical diagnosis, astronomical research, surveillance or investigation, etc., and many other areas as well.


Author(s):  
Miguel A. Boland ◽  
Edward A. K. Cohen ◽  
Seth R. Flaxman ◽  
Mark A. A. Neil

Structured Illumination Microscopy (SIM) is a widespread methodology to image live and fixed biological structures smaller than the diffraction limits of conventional optical microscopy. Using recent advances in image up-scaling through deep learning models, we demonstrate a method to reconstruct 3D SIM image stacks with twice the axial resolution attainable through conventional SIM reconstructions. We further demonstrate our method is robust to noise and evaluate it against two-point cases and axial gratings. Finally, we discuss potential adaptions of the method to further improve resolution. This article is part of the Theo Murphy meeting issue ‘Super-resolution structured illumination microscopy (part 1)’.


2020 ◽  
Author(s):  
Zafran Hussain Shah ◽  
Marcel Müller ◽  
Tung-Cheng Wang ◽  
Philip Maurice Scheidig ◽  
Axel Schneider ◽  
...  

AbstractSuper-resolution structured illumination microscopy (SR-SIM) provides an up to two-fold enhanced spatial resolution of fluorescently labeled samples. The reconstruction of high quality SR-SIM images critically depends on patterned illumination with high modulation contrast. Noisy raw image data, e.g. as a result of low excitation power or low exposure times, result in reconstruction artifacts. Here, we demonstrate deep-learning based SR-SIM image denoising that results in high quality reconstructed images. A residual encoding-decoding convolution neural network (RED-Net) was used to successfully denoise computationally reconstructed noisy SR-SIM images. We also demonstrate the entirely deep-learning based denoising and reconstruction of raw SIM images into high-resolution SR-SIM images. Both image reconstruction methods prove to be very robust against image reconstruction artifacts and generalize very well over various noise levels. The combination of computational reconstruction and subsequent denoising via RED-Net shows very robust performance during inference after training even if the microscope settings change.


2019 ◽  
Author(s):  
Luhong Jin ◽  
Bei Liu ◽  
Fenqiang Zhao ◽  
Stephen Hahn ◽  
Bowei Dong ◽  
...  

AbstractUsing deep learning to augment structured illumination microscopy (SIM), we obtained a fivefold reduction in the number of raw images required for super-resolution SIM, and generated images under extreme low light conditions (100X fewer photons). We validated the performance of deep neural networks on different cellular structures and achieved multi-color, live-cell super-resolution imaging with greatly reduced photobleaching.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Liliana Barbieri ◽  
Huw Colin-York ◽  
Kseniya Korobchevskaya ◽  
Di Li ◽  
Deanna L. Wolfson ◽  
...  

AbstractQuantifying small, rapidly evolving forces generated by cells is a major challenge for the understanding of biomechanics and mechanobiology in health and disease. Traction force microscopy remains one of the most broadly applied force probing technologies but typically restricts itself to slow events over seconds and micron-scale displacements. Here, we improve >2-fold spatially and >10-fold temporally the resolution of planar cellular force probing compared to its related conventional modalities by combining fast two-dimensional total internal reflection fluorescence super-resolution structured illumination microscopy and traction force microscopy. This live-cell 2D TIRF-SIM-TFM methodology offers a combination of spatio-temporal resolution enhancement relevant to forces on the nano- and sub-second scales, opening up new aspects of mechanobiology to analysis.


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Ruslan Röhrich ◽  
A. Femius Koenderink

AbstractStructured illumination microscopy (SIM) is a well-established fluorescence imaging technique, which can increase spatial resolution by up to a factor of two. This article reports on a new way to extend the capabilities of structured illumination microscopy, by combining ideas from the fields of illumination engineering and nanophotonics. In this technique, plasmonic arrays of hexagonal symmetry are illuminated by two obliquely incident beams originating from a single laser. The resulting interference between the light grating and plasmonic grating creates a wide range of spatial frequencies above the microscope passband, while still preserving the spatial frequencies of regular SIM. To systematically investigate this technique and to contrast it with regular SIM and localized plasmon SIM, we implement a rigorous simulation procedure, which simulates the near-field illumination of the plasmonic grating and uses it in the subsequent forward imaging model. The inverse problem, of obtaining a super-resolution (SR) image from multiple low-resolution images, is solved using a numerical reconstruction algorithm while the obtained resolution is quantitatively assessed. The results point at the possibility of resolution enhancements beyond regular SIM, which rapidly vanishes with the height above the grating. In an initial experimental realization, the existence of the expected spatial frequencies is shown and the performance of compatible reconstruction approaches is compared. Finally, we discuss the obstacles of experimental implementations that would need to be overcome for artifact-free SR imaging.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Gang Wen ◽  
Simin Li ◽  
Linbo Wang ◽  
Xiaohu Chen ◽  
Zhenglong Sun ◽  
...  

AbstractStructured illumination microscopy (SIM) has become a widely used tool for insight into biomedical challenges due to its rapid, long-term, and super-resolution (SR) imaging. However, artifacts that often appear in SIM images have long brought into question its fidelity, and might cause misinterpretation of biological structures. We present HiFi-SIM, a high-fidelity SIM reconstruction algorithm, by engineering the effective point spread function (PSF) into an ideal form. HiFi-SIM can effectively reduce commonly seen artifacts without loss of fine structures and improve the axial sectioning for samples with strong background. In particular, HiFi-SIM is not sensitive to the commonly used PSF and reconstruction parameters; hence, it lowers the requirements for dedicated PSF calibration and complicated parameter adjustment, thus promoting SIM as a daily imaging tool.


Sign in / Sign up

Export Citation Format

Share Document