Low-Frequency Infrared Spectra of Aliphatic Monocarboxylic Acids

1968 ◽  
Vol 22 (4) ◽  
pp. 286-294 ◽  
Author(s):  
J. E. Saunders ◽  
F. F. Bentley ◽  
J. E. Katon

The infrared spectra of a number of aliphatic monocarboxylic acids in the 350–50 cm−1 range are reported and several consistencies in band frequencies noted. An attempt to assign the low frequency vibrational modes of some of the simpler acids has been made based on infrared and Raman intensities. It is concluded that these molecules consist of relatively strongly coupled dimer molecules in the pure liquid and that the spectra reflect this dimer structure.

1994 ◽  
Vol 269 (49) ◽  
pp. 31047-31050
Author(s):  
S Jeyarajah ◽  
L M Proniewicz ◽  
H Bronder ◽  
J R Kincaid

Soft Matter ◽  
2021 ◽  
Author(s):  
Brian Tighe ◽  
Karsten Baumgarten

We determine how low frequency vibrational modes control the elastic shear modulus of Mikado networks, a minimal mechanical model for semi-flexible fiber networks. From prior work it is known that...


1973 ◽  
Vol 27 (1) ◽  
pp. 22-26 ◽  
Author(s):  
S. M. Craven ◽  
F. F. Bentley ◽  
D. F. Pensenstadler

The low frequency infrared spectra from 450 to 75 cm−1 of seven oximes and five aldoximes have been recorded for pure samples and for dilute solutions in cyclohexane. An intense characteristic band is present in the solution spectra at 367 ± 10 cm−1. This characteristic band shifts to 275 ± 10 cm−1 in the spectra of the OD compounds. The 367 ± 10 cm−1 and 275 ± 10 cm−1 bands are assigned to OH and OD torsional vibrations. A comparison of the solution spectra with spectra of the solid samples indicated that the OH … N hydrogen bond stretch of oximes and aldoximes occurs in 300 to 200 cm−1 region. Strong bands also are present in 140 to 100 cm−1 region which are due to OH … N bending modes or perhaps lattice vibrations.


1964 ◽  
Vol 20 (4) ◽  
pp. 685-693 ◽  
Author(s):  
F.F. Bentley ◽  
M.T. Ryan ◽  
J.E. Katon

1995 ◽  
Vol 398 ◽  
Author(s):  
A.R. Guo ◽  
C.-S. Tu ◽  
Ruiwu Tao ◽  
R.S. Katiyar ◽  
Ruyan Guo ◽  
...  

ABSTRACTThe longitudinal (LO) and transverse (TO) A1 vibrational modes have been measured between 30-1200 cm−1 as a function of temperature (30–1240 K) for CsTiOAsO4 (CTA). The frequencies for all corresponding Raman components shifted to lower frequencies on increasing the temperature, however, there is no typical soft-mode like behavior observed in the measured frequency range. The relative intensities of the low frequency bands increase dramatically with increasing temperature due to high mobility of Cs+ ion. A higher symmetry structure taking place above 940K has been confirmed by changes in the phonon spectra.


Sign in / Sign up

Export Citation Format

Share Document