scholarly journals Application of Principal Component Analysis on NIR Spectral Collection after Elimination of Interference by a Least-Squares Procedure

1988 ◽  
Vol 42 (6) ◽  
pp. 1020-1023 ◽  
Author(s):  
M. F. Devaux ◽  
D. Bertrand ◽  
P. Robert ◽  
M. Qannari

In NIR spectroscopy, multidimensional analyses such as Principal Component Analysis (PCA) may be applied to examine the similarity between spectra of natural products. However, such an approach is often limited by the effect of spectral interference due to water or particle size distribution of the samples. In the present work, the advantage of the elimination of such spectral interference before performing PCA was investigated. Unwanted component spectra were eliminated by a least-squares procedure. They were first orthogonalized and normalized by the Gram-Schmidt orthogonalization method. The subtraction coefficients were then assessed, similarly to principal component (PC) scores, by projection of the NIR spectra on the orthogonalized component spectra, and PCA was performed on the corrected spectra. This method was applied on an illustrative collection of wheat semolina conditioned in three levels of water content. Water was the component to be eliminated and had been previously modeled by two spectral patterns. These spectral patterns were used as the unwanted component spectra. PCA was applied independently before and after spectral correction of the collection of spectra and graphs obtained by the two procedures were compared. The squared correlation coefficient of the 3 first PC scores with water content was 0.979 before correction, with the 3 groups of water content appearing clearly on PCA graphs. After correction, the corresponding squared correlation coefficient for the 7 first PC scores was 0.016. PCA graphs obtained with corrected spectra also showed that the water effect was completely eliminated. At this moment, samples were separated according to their technological nature. The procedure developed may be useful in pattern recognition study and for automatic clustering of NIR spectra. It may also be applied in fields other than NIR spectroscopy.

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Elise A. Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, thereby preventing losses in production and flock welfare. We previously demonstrated the ability of visible–near-infrared (Vis–NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we report our investigation of whether variation in sheep type and environment affect the prediction accuracy of Vis–NIR spectroscopy in quantifying blood in faeces. Methods Visible–NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales, Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387–609 nm) using partial least squares regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). Samples from QLD were quantified using Hemastix® test strip and FAMACHA© diagnostic test scores. Results Principal component analysis showed that location, class of sheep and pooled versus individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity 57–94%, specificity 44–79%). The models were not predictive for blood in the naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of the QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion This study demonstrates the potential of Vis–NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture sufficient environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


1996 ◽  
Vol 50 (12) ◽  
pp. 1541-1544 ◽  
Author(s):  
Hans-René Bjørsvik

A method of combining spectroscopy and multivariate data analysis for obtaining quantitative information on how a reaction proceeds is presented. The method is an approach for the explorative synthetic organic laboratory rather than the analytical chemistry laboratory. The method implements near-infrared spectroscopy with an optical fiber transreflectance probe as instrumentation. The data analysis consists of decomposition of the spectral data, which are recorded during the course of a reaction by using principal component analysis to obtain latent variables, scores, and loading. From the scores and the corresponding reaction time, it is possible to obtain a reaction profile. This reaction profile can easily be recalculated to obtain the concentration profile over time. This calculation is based on only two quantitative measurements, which can be (1) measurement from the work-up of the reaction or (2) chromatographic analysis from two withdrawn samples during the reaction. The method is applied to the synthesis of 3-amino-propan-1,2-diol.


SaberEs ◽  
2010 ◽  
Author(s):  
María Susana Vitelleschi ◽  
Directora: Marta Beatriz Quaglino

En este trabajo se aborda la problemática de la construcción de modelos PCA (Principal Component Analysis) a partir de conjuntos de datos con información faltante. Se trabaja sobre tres situaciones diferentes con relación a la matriz de datos originales. En cada situación se generaron pérdidas a través de mecanismos aleatorios y no aleatorios, en diferentes porcentajes en una sola variable por vez, seleccionada mediante dos criterios: la que más contribuye y menos contribuye en la formación de la primera componente principal. A partir de cada conjunto de datos incompletos se construye el modelo PCA utilizando: Casos Completos, Nonlinear Iterative Partial Least Squares (NIPALS) y Expectation Maximization (EM). Se comparan los resultados con los obtenidos a través del conjunto de datos originales. Se definen una serie de medidas para estudiar cómo se afectan los resultados según la dimensión de la matriz de datos, el porcentaje y el mecanismo de pérdida, con relación a: bondad del ajuste, bondad de predicción, vectores cargas, ortonormalidad de la matriz de cargas y ortogonalidad de la matriz de “scores”.


2019 ◽  
Vol 102 (6) ◽  
pp. 1814-1821 ◽  
Author(s):  
Long Guo ◽  
Dan Zhang ◽  
Lei Wang ◽  
Zijing Xue ◽  
Mei Guo ◽  
...  

Abstract Background: Artemisia argyi and A. lavandulifolia are two morphologically similar herbal medicines derived from the Artemisia genus. Although the two Artemisia herbs have been used as herbal medicines for a long time, studies on their phytochemicals and bioactive compositions are still limited, and no research has been devoted to compare the volatile compounds in A. argyi and A. lavandulifolia. Objective: To compare the volatile constituents in A. argyi and A. lavandulifolia and to explore chemical markers for discrimination and quality evaluation of the two Artemisia herbal medicines. Methods: A GC-MS-based metabolomic approach was employed to compare and discriminate A. argyi and A. lavandulifolia from the aspect of volatile compounds. Multivariate statistical methods, including principal component analysis and orthogonal partial least-squares discriminate analysis, were applied to explore chemical markers for discrimination of the two Artemisia herbal medicines. Results: Thirty volatile compounds were identified, and the chemical profiles of volatile compounds in A. argyi and A. lavandulifolia were quite similar. Principal component analysis and orthogonal partial least-squares discrimination analysis results indicated that the two Artemisia herbal medicines could be distinguished effectively from each other. Ten volatile compounds were selected as potential chemical markers for discrimination of the two Artemisia herbal medicines. Conclusions: The GC-MS-based metabolomics could be an acceptable strategy for comparison and discrimination of A. argyi and A. lavandulifolia as well as authentication of herbal medicines derived from other closely related species. Highlights: GC-MS based metabolomic approach was firstly applied to compare and discriminate Artemisia argyi and Artemisia lavandulifolia.


Sign in / Sign up

Export Citation Format

Share Document