Measurement of Carboxyhemoglobin in Forensic Blood Samples Using UV-Visible Spectrometry and Improved Principal Component Regression

1999 ◽  
Vol 53 (2) ◽  
pp. 218-225 ◽  
Author(s):  
William J. Egan ◽  
William E. Brewer ◽  
Stephen L. Morgan
1996 ◽  
Vol 50 (5) ◽  
pp. 576-582 ◽  
Author(s):  
Marcelo Blanco ◽  
Jordi Coello ◽  
Hortensia Iturriaga ◽  
Santiago Maspoch ◽  
Smail Alaoui-Ismaili

It is demonstrated that noise in UV spectral recordings obtained by using a diode array UV-visible spectrophotometer on different days may conform to a defined pattern. Such structured noise leads to the acceptance, as significant, of components containing noise alone, in calibrations by principal component regression (PCR)—which impedes the detection of outliers at the unknown sample prediction stage and considerably diminishes the potential of this methodology for control analyses. As shown in this paper, the effect of the noise structure can be substantially decreased by recording the spectra for the calibration samples on different days. Also, a procedure for distinguishing between correct samples and outliers is proposed. The procedure fits the distribution of the squared residuals of the absorbances for the calibration samples to an exponential function and uses a 99.9% probability as the acceptable limit. It was applied to analysis of ketoprofen and methylparaben mixtures.


1994 ◽  
Vol 48 (1) ◽  
pp. 37-43 ◽  
Author(s):  
M. Blanco ◽  
J. Coello ◽  
H. Iturriaga ◽  
S. Maspoch ◽  
M. Redon

The potential of principal component regression (PCR) for mixture resolution by UV-visible spectrophotometry was assessed. For this purpose, a set of binary mixtures with Gaussian bands was simulated, and the influence of spectral overlap on the precision of quantification was studied. Likewise, the results obtained in the resolution of a mixture of components with extensively overlapped spectra were investigated in terms of spectral noise and the criterion used to select the optimal number of principal components. The model was validated by cross-validation, and the number of significant principal components was determined on the basis of four different criteria. Three types of noise were considered: intrinsic instrumental noise, which was modeled from experimental data provided by an HP 8452A diode array spectrophotometer; constant baseline shifts; and baseline drift. Introducing artificial baseline alterations in some samples of the calibration matrix was found to increase the reliability of the proposed method in routine analysis. The method was applied to the analysis of mixtures of Ti, AI, and Fe by resolving the spectra of their 8-hydroxyquinoline complexes previously extracted into chloroform.


1993 ◽  
Vol 47 (8) ◽  
pp. 1214-1221 ◽  
Author(s):  
Prashant Bhandare ◽  
Yitzhak Mendelson ◽  
Robert A. Peura ◽  
Günther Janatsch ◽  
Jürgen D. Kruse-Jarres ◽  
...  

The infrared (IR) spectra of whole blood EDTA samples, in the range between 1500 and 750 cm−1, obtained from the patient population of a general hospital, were used to compare different multivariate calibration techniques for quantitative glucose determination. Ninety-six spectra of whole undiluted blood samples with glucose concentration ranging between 44 and 291 mg/dL were used to create calibration models based on a combination of partial least-squares (PLS) and artificial neural network (ANN) methods. The prediction capabilities of these calibration models were evaluated by comparing their standard errors of prediction (SEP) with those obtained with the use of PLS and principal component regression (PCR) calibration models in an independent prediction set consisting of 31 blood samples. The optimal model based on the combined PLS-ANN produced smaller SEP values (15.6 mg/dL) compared with those produced with the use of either PLS (21.5 mg/dL) or PCR (24.0 mg/dL) methods. Our results revealed that the combined PLS-ANN models can better approximate the deviations from linearity in the relationship between spectral data and concentration, compared with either PLS or PCR models.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Khairunnisa Khairunnisa ◽  
Rizka Pitri ◽  
Victor P Butar-Butar ◽  
Agus M Soleh

This research used CFSRv2 data as output data general circulation model. CFSRv2 involves some variables data with high correlation, so in this research is using principal component regression (PCR) and partial least square (PLS) to solve the multicollinearity occurring in CFSRv2 data. This research aims to determine the best model between PCR and PLS to estimate rainfall at Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station by comparing RMSEP value and correlation value. Size used was 3×3, 4×4, 5×5, 6×6, 7×7, 8×8, 9×9, and 11×11 that was located between (-40) N - (-90) S and 1050 E -1100 E with a grid size of 0.5×0.5 The PLS model was the best model used in stastistical downscaling in this research than PCR model because of the PLS model obtained the lower RMSEP value and the higher correlation value. The best domain and RMSEP value for Bandung geophysical station, Bogor climatology station, Citeko meteorological station, and Jatiwangi meteorological station is 9 × 9 with 100.06, 6 × 6 with 194.3, 8 × 8 with 117.6, and 6 × 6 with 108.2, respectively.


2007 ◽  
Vol 90 (2) ◽  
pp. 391-404 ◽  
Author(s):  
Fadia H Metwally ◽  
Yasser S El-Saharty ◽  
Mohamed Refaat ◽  
Sonia Z El-Khateeb

Abstract New selective, precise, and accurate methods are described for the determination of a ternary mixture containing drotaverine hydrochloride (I), caffeine (II), and paracetamol (III). The first method uses the first (D1) and third (D3) derivative spectrophotometry at 331 and 315 nm for the determination of (I) and (III), respectively, without interference from (II). The second method depends on the simultaneous use of the first derivative of the ratio spectra (DD1) with measurement at 312.4 nm for determination of (I) using the spectrum of 40 μg/mL (III) as a divisor or measurement at 286.4 and 304 nm after using the spectrum of 4 μg/mL (I) as a divisor for the determination of (II) and (III), respectively. In the third method, the predictive abilities of the classical least-squares, principal component regression, and partial least-squares were examined for the simultaneous determination of the ternary mixture. The last method depends on thin-layer chromatography-densitometry after separation of the mixture on silica gel plates using ethyl acetatechloroformmethanol (16 + 3 + 1, v/v/v) as the mobile phase. The spots were scanned at 281, 272, and 248 nm for the determination of (I), (II), and (III), respectively. Regression analysis showed good correlation in the selected ranges with excellent percentage recoveries. The chemical variables affecting the analytical performance of the methodology were studied and optimized. The methods showed no significant interferences from excipients. Intraday and interday assay precision and accuracy values were within regulatory limits. The suggested procedures were checked using laboratory-prepared mixtures and were successfully applied for the analysis of their pharmaceutical preparations. The validity of the proposed methods was further assessed by applying a standard addition technique. The results obtained by applying the proposed methods were statistically analyzed and compared with those obtained by the manufacturer's method.


2021 ◽  
pp. 1471082X2110229
Author(s):  
D. Stasinopoulos Mikis ◽  
A. Rigby Robert ◽  
Georgikopoulos Nikolaos ◽  
De Bastiani Fernanda

A solution to the problem of having to deal with a large number of interrelated explanatory variables within a generalized additive model for location, scale and shape (GAMLSS) is given here using as an example the Greek–German government bond yield spreads from 25 April 2005 to 31 March 2010. Those were turbulent financial years, and in order to capture the spreads behaviour, a model has to be able to deal with the complex nature of the financial indicators used to predict the spreads. Fitting a model, using principal components regression of both main and first order interaction terms, for all the parameters of the assumed distribution of the response variable seems to produce promising results.


2021 ◽  
Vol 19 (1) ◽  
pp. 205-213
Author(s):  
Hany W. Darwish ◽  
Abdulrahman A. Al Majed ◽  
Ibrahim A. Al-Suwaidan ◽  
Ibrahim A. Darwish ◽  
Ahmed H. Bakheit ◽  
...  

Abstract Five various chemometric methods were established for the simultaneous determination of azilsartan medoxomil (AZM) and chlorthalidone in the presence of azilsartan which is the core impurity of AZM. The full spectrum-based chemometric techniques, namely partial least squares (PLS), principal component regression, and artificial neural networks (ANN), were among the applied methods. Besides, the ANN and PLS were the other two methods that were extended by genetic algorithm procedure (GA-PLS and GA-ANN) as a wavelength selection procedure. The models were developed by applying a multilevel multifactor experimental design. The predictive power of the suggested models was evaluated through a validation set containing nine mixtures with different ratios of the three analytes. For the analysis of Edarbyclor® tablets, all the proposed procedures were applied and the best results were achieved in the case of ANN, GA-ANN, and GA-PLS methods. The findings of the three methods were revealed as the quantitative tool for the analysis of the three components without any intrusion from the co-formulated excipient and without prior separation procedures. Moreover, the GA impact on strengthening the predictive power of ANN- and PLS-based models was also highlighted.


2021 ◽  
Vol 11 (13) ◽  
pp. 5895
Author(s):  
Kristina Serec ◽  
Sanja Dolanski Babić

The double-stranded B-form and A-form have long been considered the two most important native forms of DNA, each with its own distinct biological roles and hence the focus of many areas of study, from cellular functions to cancer diagnostics and drug treatment. Due to the heterogeneity and sensitivity of the secondary structure of DNA, there is a need for tools capable of a rapid and reliable quantification of DNA conformation in diverse environments. In this work, the second paper in the series that addresses conformational transitions in DNA thin films utilizing FTIR spectroscopy, we exploit popular chemometric methods: the principal component analysis (PCA), support vector machine (SVM) learning algorithm, and principal component regression (PCR), in order to quantify and categorize DNA conformation in thin films of different hydrated states. By complementing FTIR technique with multivariate statistical methods, we demonstrate the ability of our sample preparation and automated spectral analysis protocol to rapidly and efficiently determine conformation in DNA thin films based on the vibrational signatures in the 1800–935 cm−1 range. Furthermore, we assess the impact of small hydration-related changes in FTIR spectra on automated DNA conformation detection and how to avoid discrepancies by careful sampling.


Sign in / Sign up

Export Citation Format

Share Document