scholarly journals Immunohistochemical Characterization of the Distribution of Galectin-4 in Porcine Small Intestine

2005 ◽  
Vol 53 (2) ◽  
pp. 197-205 ◽  
Author(s):  
Melissa A. Wooters ◽  
Michael B. Hildreth ◽  
Eric A. Nelson ◽  
Alan K. Erickson

Galectins are an evolutionarily conserved family of 15 different lectins found in various combinations in virtually every type of animal cell. One of the primary galectins expressed in intestinal epithelium is galectin-4, a tandem-repeat galectin with two carbohydrate-recognition domains in a single polypeptide chain. In the current study, we produced an anti-galectin-4 monoclonal antibody (MAb) for determining the distribution of galectin-4 in porcine small intestine to enhance our understanding of where galectin-4 performs its functions in the small intestine. In immunohistochemistry studies, this MAb detected galectin-4 primarily in the cytoplasm of absorptive epithelial cells lining intestinal villi. Mature epithelial cells at the villous tips stained the most intensely with this MAb, with progressively less intense staining observed along the sides of villi and into the crypts. In addition to its cytoplasmic localization, galectin-4 was also associated with nuclei in villous tip cells, indicating that some galectin-4 may migrate to the nucleus during terminal maturation of these cells. In intestinal crypts, a specific subset of cells, which may be enteroendocrine cells, expressed galectin-4 at a relatively high level. Galectin-4 distribution patterns were similar in all three regions (duodenum, jejunum, and ileum) of porcine small intestine.

1995 ◽  
Vol 43 (6) ◽  
pp. 579-589 ◽  
Author(s):  
J Mühlhauser ◽  
C Crescimanno ◽  
M Kasper ◽  
D Zaccheo ◽  
M Castellucci

Cytokeratins (CKs) are related to proliferation and differentiation of epithelial cells. Little knowledge exists about CK patterns in human trophoblast subpopulations (villous and extravillous trophoblasts). To better understand differentiation and function of trophoblast components, we studied the distribution patterns of CKs in the placenta throughout pregnancy. A panel of well-defined monoclonal antibodies against different types of cytokeratins, vimentin, and fibrin, was used on frozen and paraffin sections. CK8, 18, and 19 were expressed in all the villous and extravillous trophoblastic subsets throughout pregnancy. In the first trimester, syncytiotrophoblasts were positive for CK7 and 13 along the basal membrane. As pregnancy progressed there was an increase in intensity of the reaction product and a more diffuse positive staining of CK7 in the cytoplasm of the syncytium, with evident positivity along the apical membrane. CK13 showed similar expression as CK7, but with less intense staining along the apical membrane and less prominent staining in the cytoplasm. Villous cytotrophoblasts were also positive for CK7 and CK13. CK17 was found related to cytotrophoblastic cells in contact with or next to fibrin deposits. Extravillous cytotrophoblasts in cell islands and cell columns were positive for CK13 only in the cell layers located proximal to the villous stroma, whereas the distal and more differentiated cells were negative. CK7 was positive in all epithelial cells of cell islands and columns, but the reaction product was not present in cells deeply migrated into the decidua. Amnion was negative for anti-CK13 antibodies in the first trimester but was positive at term. CK4 and CK16 were not found in the placenta. Our study shows for the first time that the different populations of human placental trophoblast express cytokeratins in developmental, differentiative, and functional specific patterns. These findings can be useful to distinguish and classify the various trophoblastic populations and provide a foundation for studying pathological aspects of the trophoblast.


Author(s):  
A. J. Tousimis

The elemental composition of amino acids is similar to that of the major structural components of the epithelial cells of the small intestine and other tissues. Therefore, their subcellular localization and concentration measurements are not possible by x-ray microanalysis. Radioactive isotope labeling: I131-tyrosine, Se75-methionine and S35-methionine have been successfully employed in numerous absorption and transport studies. The latter two have been utilized both in vitro and vivo, with similar results in the hamster and human small intestine. Non-radioactive Selenomethionine, since its absorption/transport behavior is assumed to be the same as that of Se75- methionine and S75-methionine could serve as a compound tracer for this amino acid.


Author(s):  
D.S. Friend ◽  
N. Ghildyal ◽  
M.F. Gurish ◽  
K.F. Austen ◽  
R.L. Stevens

Trichinella spiralis induces a profound mastocytosis and eosinophilia in the small intestine of the infected mouse. Mouse mast cells (MC) store in their granules various combinations of at least five chymotryptic chymases [designated mouse MC protease (mMCP) 1 to 5], two tryptic proteases designated mMCP-6 and mMCP-7 and an exopeptidase, carboxypeptidase A (mMC-CPA). Using antipeptide, protease -specific antibodies to these MC granule proteases, immunohistochemistry was done to determine the distribution, number and protease phenotype of the MCs in the small intestine and spleen 10 to >60 days after Trichinella infection of BALB/c and C3H mice. TEM was performed to evaluate the granule morphology of the MCs between intestinal epithelial cells and in the lamina propria (mucosal MCs) and in the submucosa, muscle and serosa of the intestine (submucosal MCs).As noted in the table below, the number of submucosal MCs remained constant throughout the study. In contrast, on day 14, the number of MCs in the mucosa increased ~25 fold. Increased numbers of MCs were observed between epithelial cells in the mucosal crypts, in the lamina propria and to a lesser extent, between epithelial cells of the intestinal villi.


Author(s):  
Jacob Bamaiyi ◽  
Omajali ◽  
Sanni Momoh

This study investigates the effects of kanwa on rat gastrointestinal phosphatases. The rats were administered 7% w/v concentration of  trona (Kanwa) orally for a period of two weeks in order to investigate how this compound is being used as food additive in some homes in Nigeria. The Kanwa used in this study was the handpicked variety obtained from sellers from Anyigba market in eastern part of Kogi State, Nigeria. Kanwa, a hydrated sodium carbonate (Na2CO3NaHCO3.2H2O) was obtained as a dried lake salt. Acid phosphatase has the ability to dephosphorylate molecules containing phosphate group. The decreased and elevated level in serum or plasma acid and alkaline phosphatases serves as diagnostic indices for various diseases. Results showed that there was increase and decrease of acid phosphatase (ACP) activities in both the stomach and small intestine. The activities of alkaline phosphatase (ALP) fluctuated in the small intestine. However, in the stomach, an increase activity of ALP was noticed throughout the period of ‘Kanwa’ administration. We concluded that although the level of ‘Kanwa’ consumed in most homes may not be toxic if not taken continuously or repeatedly. Thus, continuous consumption should be discouraged as accumulation of high level of ‘Kanwa’ may cause damages or injuries to the various organs/tissues and may disrupt normal body function.


2006 ◽  
Vol 50 (2) ◽  
pp. 198-200
Author(s):  
Juliana Fariña ◽  
M. Concepción Millana ◽  
M<sup>a</sup> Jesús Fernández-Aceñero ◽  
Vanessa Campo-Ruiz

FEBS Letters ◽  
1975 ◽  
Vol 58 (1-2) ◽  
pp. 181-185 ◽  
Author(s):  
Edna J. Bates ◽  
Gillian M. Heaton ◽  
Carol Taylor ◽  
John C. Kernohan ◽  
Philip Cohen

1978 ◽  
Vol 56 (9) ◽  
pp. 920-925 ◽  
Author(s):  
N. G. Seidah ◽  
R. Routhier ◽  
M. Caron ◽  
M. Chrétien ◽  
S. Demassieux ◽  
...  

In this paper, we present the amino-terminal sequence of rat tonin, an endopeptidase responsible for the conversion of angiotensinogen, the tetradecapeptide renin substrate, or angiotensin I to angiotensin II. It is shown that isoleucine and proline occupy the amino- and carboxy-terminal residues respectively. The N-terminal sequence analysis permitted the identification of 34 out of the first 40 residue s of the single polypeptide chain composed of 272 amino acids. The se results showed an extensive homology with the sequence of many serine proteases of the trypsin–chymotrypsin family. This information, coupled with the slow inhibition of tonin by diisopropylfluorophosphate, classified this enzyme as a selective endopeptidase of the active serine protease family.


1989 ◽  
Vol 109 (3) ◽  
pp. 1057-1069 ◽  
Author(s):  
A Marxer ◽  
B Stieger ◽  
A Quaroni ◽  
M Kashgarian ◽  
H P Hauri

The previously produced monoclonal antibody IEC 1/48 against cultured rat intestinal crypt cells (Quaroni, A., and K. J. Isselbacher. 1981. J. Natl. Cancer Inst. 67:1353-1362) was extensively characterized and found to be directed against the beta subunit of (Na+ + K+)-ATPase as assessed by immunological and enzymatic criteria. Under nondenaturing conditions the antibody precipitated the alpha-beta enzyme complex (98,000 and 48,000 Mr). This probe, together with the monoclonal antibody C 62.4 against the alpha subunit (Kashgarian, M., D. Biemesderfer, M. Caplan, and B. Forbush. 1985. Kidney Int. 28:899-913), was used to localize (Na+ + K+)-ATPase in epithelial cells along the rat intestinal tract by immunofluorescence and immunoelectron microscopy. Both antibodies exclusively labeled the basolateral membrane of small intestine and proximal colon epithelial cells. However, in the distal colon, IEC 1/48, but not C 62.4, also labeled the brush border membrane. The cross-reacting beta-subunit-like antigen on the apical cell pole was tightly associated with isolated brush borders but was apparently devoid of (Na+ + K+)-ATPase activity. Subcellular fractionation of colonocytes in conjunction with limited proteolysis and surface radioiodination of intestinal segments suggested that the cross-reacting antigen in the brush border may be very similar to the beta subunit. The results support the notion that in the small intestine and proximal colon the enzyme subunits are exclusively targeted to the basolateral membrane while in the distal colon nonassembled beta subunit or a beta-subunit-like protein is also transported to the apical cell pole.


Sign in / Sign up

Export Citation Format

Share Document