scholarly journals A novel function for CDK2 activity at meiotic crossover sites

PLoS Biology ◽  
2020 ◽  
Vol 18 (10) ◽  
pp. e3000903
Author(s):  
Nathan Palmer ◽  
S. Zakiah A. Talib ◽  
Priti Singh ◽  
Christine M. F. Goh ◽  
Kui Liu ◽  
...  
2009 ◽  
Vol 122 (12) ◽  
pp. 2055-2063 ◽  
Author(s):  
K. Wang ◽  
D. Tang ◽  
M. Wang ◽  
J. Lu ◽  
H. Yu ◽  
...  
Keyword(s):  

2017 ◽  
Author(s):  
Sabrina Z. Jan ◽  
Aldo Jongejan ◽  
Cindy M. Korver ◽  
Saskia K. M. van Daalen ◽  
Ans M. M. van Pelt ◽  
...  

To prevent chromosomal aberrations to be transmitted to the offspring, strict meiotic checkpoints are in place to remove aberrant spermatocytes. However, in about 1% of all males these checkpoints cause complete meiotic arrest leading to azoospermia and subsequent infertility. We here unravel two clearly distinct meiotic arrest mechanisms that act during the prophase of human male meiosis. Type I arrested spermatocytes display severe asynapsis of the homologous chromosomes, disturbed XY-body formation and increased expression of the Y-chromosome encoded gene ZFY and seem to activate a DNA damage pathway leading to induction of p63 mediated spermatocyte elimination. Type II arrested spermatocytes display normal chromosome synapsis, normal XY-body morphology and meiotic crossover formation but have a lowered expression of several cell cycle regulating genes and fail to properly silence the X-chromosome encoded gene ZFX. Discovery and understanding of these meiotic arrest mechanisms increases our knowledge on how genomic stability is guarded during human germ cell development.


2021 ◽  
Vol 118 (23) ◽  
pp. e2022704118
Author(s):  
Jingqi Dai ◽  
Aurore Sanchez ◽  
Céline Adam ◽  
Lepakshi Ranjha ◽  
Giordano Reginato ◽  
...  

In budding yeast, the MutL homolog heterodimer Mlh1-Mlh3 (MutLγ) plays a central role in the formation of meiotic crossovers. It is also involved in the repair of a subset of mismatches besides the main mismatch repair (MMR) endonuclease Mlh1-Pms1 (MutLα). The heterodimer interface and endonuclease sites of MutLγ and MutLα are located in their C-terminal domain (CTD). The molecular basis of MutLγ’s dual roles in MMR and meiosis is not known. To better understand the specificity of MutLγ, we characterized the crystal structure of Saccharomyces cerevisiae MutLγ(CTD). Although MutLγ(CTD) presents overall similarities with MutLα(CTD), it harbors some rearrangement of the surface surrounding the active site, which indicates altered substrate preference. The last amino acids of Mlh1 participate in the Mlh3 endonuclease site as previously reported for Pms1. We characterized mlh1 alleles and showed a critical role of this Mlh1 extreme C terminus both in MMR and in meiotic recombination. We showed that the MutLγ(CTD) preferentially binds Holliday junctions, contrary to MutLα(CTD). We characterized Mlh3 positions on the N-terminal domain (NTD) and CTD that could contribute to the positioning of the NTD close to the CTD in the context of the full-length MutLγ. Finally, crystal packing revealed an assembly of MutLγ(CTD) molecules in filament structures. Mutation at the corresponding interfaces reduced crossover formation, suggesting that these superstructures may contribute to the oligomer formation proposed for MutLγ. This study defines clear divergent features between the MutL homologs and identifies, at the molecular level, their specialization toward MMR or meiotic recombination functions.


2002 ◽  
Vol 115 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Bradley J. Schnackenberg ◽  
William F. Marzluff

In somatic cells, cyclin E-cdk2 activity oscillates during the cell cycle and is required for the regulation of the G1/S transition. Cyclin E and its associated kinase activity remain constant throughout early sea urchin embryogenesis, consistent with reports from studies using several other embryonic systems. Here we have expanded these studies and show that cyclin E rapidly and selectively enters the sperm head after fertilization and remains concentrated in the male pronucleus until pronuclear fusion, at which time it disperses throughout the zygotic nucleus. We also show that cyclin E is not concentrated at the centrosomes but is associated with condensed chromosomes throughout mitosis for at least the first four cell cycles. Isolated mitotic spindles are enriched for cyclin E and cdk2, which are localized to the chromosomes. The chromosomal cyclin E is associated with active kinase during mitosis. We propose that cyclin E may play a role in the remodeling of the sperm head and re-licensing of the paternal genome after fertilization. Furthermore, cyclin E does not need to be degraded or dissociated from the chromosomes during mitosis; instead, it may be required on chromosomes during mitosis to immediately initiate the next round of DNA replication.


Sign in / Sign up

Export Citation Format

Share Document