scholarly journals Recognition of virus-infected cells by natural killer cell clones is controlled by polymorphic target cell elements.

1993 ◽  
Vol 178 (3) ◽  
pp. 961-969 ◽  
Author(s):  
M S Malnati ◽  
P Lusso ◽  
E Ciccone ◽  
A Moretta ◽  
L Moretta ◽  
...  

Natural killer (NK) cells provide a first line of defense against viral infections. The mechanisms by which NK cells recognize and eliminate infected cells are still largely unknown. To test whether target cell elements contribute to NK cell recognition of virus-infected cells, human NK cells were cloned from two unrelated donors and assayed for their ability to kill normal autologous or allogeneic cells before and after infection by human herpesvirus 6 (HHV-6), a T-lymphotropic herpesvirus. Of 132 NK clones isolated from donor 1, all displayed strong cytolytic activity against the NK-sensitive cell line K562, none killed uninfected autologous T cells, and 65 (49%) killed autologous T cells infected with HHV-6. A panel of representative NK clones from donors 1 and 2 was tested on targets obtained from four donors. A wide heterogeneity was observed in the specificity of lysis of infected target cells among the NK clones. Some clones killed none, some killed only one, and others killed more than one of the different HHV-6-infected target cells. Killing of infected targets was not due to complete absence of class I molecules because class I surface levels were only partially affected by HHV-6 infection. Thus, target cell recognition is not controlled by the effector NK cell alone, but also by polymorphic elements on the target cell that restrict NK cell recognition. Furthermore, NK clones from different donors display a variable range of specificities in their recognition of infected target cells.

1999 ◽  
Vol 190 (7) ◽  
pp. 1005-1012 ◽  
Author(s):  
Mikael Eriksson ◽  
Guenther Leitz ◽  
Erik Fällman ◽  
Ove Axner ◽  
James C. Ryan ◽  
...  

Inhibitory receptors expressed on natural killer (NK) cells abrogate positive signals upon binding corresponding major histocompatibility complex (MHC) class I molecules on various target cells. By directly micromanipulating the effector–target cell encounter using an optical tweezers system which allowed temporal and spatial control, we demonstrate that Ly49–MHC class I interactions prevent characteristic cellular responses in NK cells upon binding to target cells. Furthermore, using this system, we directly demonstrate that an NK cell already bound to a resistant target cell may simultaneously bind and kill a susceptible target cell. Thus, although Ly49-mediated inhibitory signals can prevent many types of effector responses, they do not globally inhibit cellular function, but rather the inhibitory signal is spatially restricted towards resistant targets.


2019 ◽  
Vol 93 (23) ◽  
Author(s):  
Zahra Kiani ◽  
Franck P. Dupuy ◽  
Julie Bruneau ◽  
Bertrand Lebouché ◽  
Christelle Retière ◽  
...  

ABSTRACT Several studies support a role for specific killer immunoglobulin-like receptor (KIR)–HLA combinations in protection from HIV infection and slower progression to AIDS. Natural killer (NK) cells acquire effector functions through education, a process that requires the interaction of inhibitory NK cell receptors with their major histocompatibility complex (MHC) class I (or HLA class I [HLA-I]) ligands. HLA-C allotypes are ligands for the inhibitory KIRs (iKIRs) KIR2DL1, KIR2DL2, and KIR2DL3, whereas the ligand for KIR3DL1 is HLA-Bw4. HIV infection reduces the expression of HLA-A, -B, and -C on the surfaces of infected CD4 (iCD4) T cells. Here we investigated whether education through iKIR-HLA interactions influenced NK cell responses to autologous iCD4 cells. Enriched NK cells were stimulated with autologous iCD4 cells or with uninfected CD4 cells as controls. The capacities of single-positive (sp) KIR2DL1, KIR2DL2, KIR2DL3, and KIR3DL1 NK cells to produce CCL4, gamma interferon (IFN-γ), and/or CD107a were assessed by flow cytometry. Overall, we observed that the potency of NK cell education was directly related to the frequency of each spiKIR+ NK cell’s ability to respond to the reduction of its cognate HLA ligand on autologous iCD4 cells, as measured by the frequency of production by spiKIR+ NK cells of CCL4, IFN-γ, and/or CD107a. Both NK cell education and HIV-mediated changes in HLA expression influenced NK cell responses to iCD4 cells. IMPORTANCE Epidemiological studies show that natural killer (NK) cells have anti-HIV activity: they are able to reduce the risk of HIV infection and/or slow HIV disease progression. How NK cells contribute to these outcomes is not fully characterized. We used primary NK cells and autologous HIV-infected cells to examine the role of education through four inhibitory killer immunoglobulin-like receptors (iKIRs) from persons with HLA types that are able to educate NK cells bearing one of these iKIRs. HIV-infected cells activated NK cells through missing-self mechanisms due to the downmodulation of cell surface HLA expression mediated by HIV Nef and Vpu. A higher frequency of educated than uneducated NK cells expressing each of these iKIRs responded to autologous HIV-infected cells by producing CCL4, IFN-γ, and CD107a. Since NK cells were from non-HIV-infected individuals, they model the consequences of healthy NK cell–HIV-infected cell interactions occurring in the HIV eclipse phase, when new infections are susceptible to extinction.


1996 ◽  
Vol 184 (6) ◽  
pp. 2119-2128 ◽  
Author(s):  
L.H. Mason ◽  
S.K. Anderson ◽  
W.M. Yokoyama ◽  
H.R.C. Smith ◽  
R. Winkler-Pickett ◽  
...  

Proteins encoded by members of the Ly-49 gene family are predominantly expressed on murine natural killer (NK) cells. Several members of this gene family have been demonstrated to inhibit NK cell lysis upon recognizing their class I ligands on target cells. In this report, we present data supporting that not all Ly-49 proteins inhibit NK cell function. Our laboratory has generated and characterized a monoclonal antibody (mAb) (12A8) that can be used to recognize the Ly-49D subset of murine NK cells. Transfection of Cos-7 cells with known members of the Ly-49 gene family revealed that 12A8 recognizes Ly-49D, but also cross-reacts with the Ly-49A protein on B6 NK cells. In addition, 12A8 demonstrates reactivity by both immunoprecipitation and two-color flow cytometry analysis with an NK cell subset that is distinct from those expressing Ly-49A, C, or G2. An Ly-49D+ subset of NK cells that did not express Ly49A, C, and G2 was isolated and examined for their functional capabilities. Tumor targets and concanovalin A (ConA) lymphoblasts from a variety of H2 haplotypes were examined for their susceptibility to lysis by Ly-49D+ NK cells. None of the major histocompatibility complex class I–bearing targets inhibited lysis of Ly-49D+ NK cells. More importantly, we demonstrate that the addition of mAb 12A8 to Ly-49D+ NK cells can augment lysis of FcγR+ target cells in a reverse antibody-dependent cellular cytotoxicity–type assay and induces apoptosis in Ly49D+ NK cells. Furthermore, the cytoplasmic domain of Ly-49D does not contain the V/IxYxxL immunoreceptor tyrosine-based inhibitory motif found in Ly-49A, C, or G2 that has been characterized in the human p58 killer inhibitory receptors. Therefore, Ly-49D is the first member of the Ly-49 family characterized as transmitting positive signals to NK cells, rather than inhibiting NK cell function.


1995 ◽  
Vol 79 (3) ◽  
pp. 732-737 ◽  
Author(s):  
S. J. Won ◽  
M. T. Lin

The effects of different ambient temperatures (Ta) on the splenic natural killer (NK) cell activity, effector-target cell conjugation activity, and NK cell numbers were assessed in male inbred C3H/HeNCrj mice (7–10 wk old). The splenic NK cytotoxic activities were examined in a 4-h 51Cr release assay in mouse spleen cells that were obtained 1, 2, 4, 8, or 16 days after exposure to Ta of 22, 4, or 35 degrees C. The percentage of conjugating lymphocytes was calculated by counting the number of single lymphocytes bound to single target cells per 400 effector cells. The numbers of NK cells were expressed by the percentage of 5E6-positive cells. The 5E6 identifies only a subset of NK cells. It was found that the splenic NK cell activity, the effector-target cell conjugation activity, or the NK cell number began to fall 1 day after cold (Ta 4 degrees C) or heat (Ta 35 degrees C) stress. After a 16-day period of either cold or heat exposure, the fall in the splenic NK cell activity, the effector-target cell conjugation activity, or the number of 5E6-positive subsets of NK cells was still evident. Compared with those of the control group (Ta 22 degrees C), the cold-stressed mice had higher adrenal cortisol concentration and lower colonic temperature, whereas the heat-stressed animals had higher adrenal cortisol concentration and higher colonic temperature during a 16-day period of thermal exposure. However, neither cold nor heat stress affected both the body weight gain and the spleen weight in our mice.


2014 ◽  
Vol 89 (1) ◽  
pp. 97-109 ◽  
Author(s):  
Shayarana L. Gooneratne ◽  
Jonathan Richard ◽  
Wen Shi Lee ◽  
Andrés Finzi ◽  
Stephen J. Kent ◽  
...  

ABSTRACTMany attempts to design prophylactic human immunodeficiency virus type 1 (HIV-1) vaccines have focused on the induction of neutralizing antibodies (Abs) that block infection by free virions. Despite the focus on viral particles, virus-infected cells, which can be found within mucosal secretions, are more infectious than free virus bothin vitroandin vivo. Furthermore, assessment of human transmission couples suggests infected seminal lymphocytes might be responsible for a proportion of HIV-1 transmissions. Although vaccines that induce neutralizing Abs are sought, only some broadly neutralizing Abs efficiently block cell-to-cell transmission of HIV-1. As HIV-1 vaccines need to elicit immune responses capable of controlling both free and cell-associated virus, we evaluated the potential of natural killer (NK) cells to respond in an Ab-dependent manner to allogeneic T cells bearing HIV-1 antigens. This study presents data measuring Ab-dependent anti-HIV-1 NK cell responses to primary and transformed allogeneic T-cell targets. We found that NK cells are robustly activated in an anti-HIV-1 Ab-dependent manner against allogeneic targets and that tested target cells are subject to Ab-dependent cytolysis. Furthermore, the educated KIR3DL1+NK cell subset from HLA-Bw4+individuals exhibits an activation advantage over the KIR3DL1−subset that contains both NK cells educated through other receptor/ligand combinations and uneducated NK cells. These results are intriguing and important for understanding the regulation of Ab-dependent NK cell responses and are potentially valuable for designing Ab-dependent therapies and/or vaccines.IMPORTANCENK cell-mediated anti-HIV-1 antibody-dependent functions have been associated with protection from infection and disease progression; however, their role in protecting from infection with allogeneic cells infected with HIV-1 is unknown. We found that HIV-1-specific ADCC antibodies bound to allogeneic cells infected with HIV-1 or coated with HIV-1 gp120 were capable of activating NK cells and/or trigging cytolysis of the allogeneic target cells. This suggests ADCC may be able to assist in preventing infection with cell-associated HIV-1. In order to fully utilize NK cell-mediated Ab-dependent effector functions, it might also be important that educated NK cells, which hold the highest activation potential, can become activated against targets bearing HIV-1 antigens and expressing the ligands for self-inhibitory receptors. Here, we show that with Ab-dependent stimulation, NK cells expressing inhibitory receptors can mediate robust activation against targets expressing the ligands for those receptors.


1996 ◽  
Vol 183 (4) ◽  
pp. 1817-1827 ◽  
Author(s):  
J E Gumperz ◽  
N M Valiante ◽  
P Parham ◽  
L L Lanier ◽  
D Tyan

Natural killer (NK) cells that express the NKB1 receptor are inhibited from killing target cells that possess human histocompatibility leukocyte antigen (HLA) B molecules bearing the Bw4 serological epitope. To investigate whether NKB1 expression is affected by HLA type, peripheral blood lymphocytes of 203 HLA-typed donors were examined. Most donors had a single population of NKB1+ cells, but some had two populations expressing different cell surface levels of NKB1, and others had no detectable NKB1+ cells. Among the donors expressing NKB1, both the relative abundance of NKB1+ NK cells and their level of cell surface expression varied substantially. The percentage of NKB1+ NK cells ranged from 0 to >75% (mean 14.7%), and the mean fluorescence of the positive population varied over three orders of magnitude. For each donor, the small percentage of T cells expressing NKB1 (usually <2%), had a pattern of expression mirroring that of the NK cells. NKB1 expression by NK and T cells remained stable over the 2-yr period that five donors were tested. Patterns of NKB1 expression were not associated with Bw4 or Bw6 serotype of the donor or with the presence of any individual HLA-A or -B antigens. Cells expressing NKB1 are often found in donors who do not possess an appropriate class I ligand, and can be absent in those who express Bw4+ HLA-B antigens. Family studies further suggested that the phenotype of NKB1 expression is inherited but not HLA linked. Whereas identical twins show matching patterns of NKB1 expression, HLA-identical siblings can differ in NKB1 expression, and conversely, HLA-disparate siblings can be similar. Thus NKB1 expression phenotypes are tightly regulated and extremely heterogeneous, but not correlated with HLA type.


1995 ◽  
Vol 181 (3) ◽  
pp. 1133-1144 ◽  
Author(s):  
J E Gumperz ◽  
V Litwin ◽  
J H Phillips ◽  
L L Lanier ◽  
P Parham

Although inhibition of natural killer (NK) cell-mediated lysis by the class I HLA molecules of target cells is an established phenomenon, knowledge of the features of class I molecules which induce this effect remains rudimentary. Using class I alleles HLA-B*1502 and B*1513 which differ only at residues 77-83 which define the Bw4 and Bw6 serological epitopes, we tested the hypothesis that the presence of the Bw4 epitope on class I molecules determines recognition by NKB1+ NK cells. HLA-B*1513 possesses the Bw4 epitope, whereas B*1502 has the Bw6 epitope. Lysis by NKB1+ NK cell clones of transfected target cells expressing B*1513 as the only HLA-A, -B, or -C molecule was inhibited, whereas killing of transfectants expressing B*1502 was not. Addition of an an anti-NKB1 monoclonal antibody reconstituted lysis of the targets expressing B*1513, but did not affect killing of targets bearing B*1502. The inhibitory effect of B*1513 could be similarly prevented by the addition of an anti-class I monoclonal antibody. These results show that the presence of the Bw4 epitope influences recognition of HLA-B molecules by NK cells that express NKB1, and suggest that the NKB1 molecule may act as a receptor for Bw4+ HLA-B alleles. Sequences outside of the Bw4 region must also affect recognition by NKB1+ NK cells, because lysis of transfectants expressing HLA-A*2403 or A*2501, which possess the Bw4 epitope but are in other ways substantially different from HLA-B molecules, was not increased by addition of the anti-NKB1 antibody. Asparagine 86, the single site of N-linked glycosylation on class I molecules, is in close proximity to the Bw4/Bw6 region. The glycosylation site of the Bw4-positive molecule B*5801 was mutated, and the mutant molecules tested for inhibition of NKB1+ NK cells. Inhibition that could be reversed by addition of the anti-NKB1 monoclonal antibody was observed, showing the presence of the carbohydrate moiety is not essential for class I recognition by NKB1+ NK cell clones.


1993 ◽  
Vol 178 (4) ◽  
pp. 1321-1336 ◽  
Author(s):  
V Litwin ◽  
J Gumperz ◽  
P Parham ◽  
J H Phillips ◽  
L L Lanier

Prior studies using polyclonal populations of natural killer (NK) cells have revealed that expression of certain major histocompatibility complex (MHC) class I molecules on the membrane of normal and transformed hematopoietic target cells can prevent NK cell-mediated cytotoxicity. However, the extent of clonal heterogeneity within the NK cell population and the effect of self versus non-self MHC alleles has not been clearly established. In the present study, we have generated more than 200 independently derived human NK cell clones from four individuals of known human histocompatibility leukocyte antigens (HLA) type. NK clones were analyzed for cytolytic activity against MHC class I-deficient Epstein Barr virus (EBV) transformed B lymphoblastoid cell lines (B-LCL) stably transfected with several HLA-A, -B, or -C genes representing either self or non-self alleles. All NK clones killed the prototypic HLA-negative erythroleukemia K562 and most lysed the MHC class I-deficient C1R and 721.221 B-LCL. Analysis of the panel of HLA-A, -B, and -C transfectants supported the following general conclusions. (a) Whereas recent studies have suggested that HLA-C antigens may be preferentially recognized by NK cells, our findings indicate that 70% or more of all NK clones are able to recognize certain HLA-B alleles and many also recognize HLA-A alleles. Moreover, a single NK clone has the potential to recognize multiple alleles of HLA-A, HLA-B, and HLA-C antigens. Thus, HLA-C is not unique in conferring protection against NK lysis. (b) No simple patterns of HLA specificity emerged. Examination of a large number of NK clones from a single donor revealed overlapping, yet distinct, patterns of reactivity when a sufficiently broad panel of HLA transfectants was examined. (c) Both autologous and allogeneic HLA antigens were recognized by NK clones. There was neither evidence for deletion of NK clones reactive with self alleles nor any indication for an increased frequency of NK clones recognizing self alleles. (d) With only a few exceptions, protection conferred by transfection of HLA alleles into B-LCL was usually not absolute. Rather a continuum from essentially no protection for certain alleles (HLA-A*0201) to very striking protection for other alleles (HLA-B*5801), with a wide range of intermediate effects, was observed. (e) Whereas most NK clones retained a relatively stable HLA specificity, some NK clones demonstrated variable and heterogeneous activity over time. (f) NK cell recognition and specificity cannot be explained entirely by the presence or absence of HLA class I antigens on the target cell.(ABSTRACT TRUNCATED AT 400 WORDS)


Blood ◽  
2006 ◽  
Vol 107 (3) ◽  
pp. 994-1002 ◽  
Author(s):  
Anouk Caraux ◽  
Nayoung Kim ◽  
Sarah E. Bell ◽  
Simona Zompi ◽  
Thomas Ranson ◽  
...  

AbstractPhospholipase C-γ2 (PLC-γ2) is a key component of signal transduction in leukocytes. In natural killer (NK) cells, PLC-γ2 is pivotal for cellular cytotoxicity; however, it is not known which steps of the cytolytic machinery it regulates. We found that PLC-γ2-deficient NK cells formed conjugates with target cells and polarized the microtubule-organizing center, but failed to secrete cytotoxic granules, due to defective calcium mobilization. Consequently, cytotoxicity was completely abrogated in PLC-γ2-deficient cells, regardless of whether targets expressed NKG2D ligands, missed self major histocompatibility complex (MHC) class I, or whether NK cells were stimulated with IL-2 and antibodies specific for NKR-P1C, CD16, CD244, Ly49D, and Ly49H. Defective secretion was specific to cytotoxic granules because release of IFN-γ on stimulation with IL-12 was normal. Plcg2-/- mice could not reject MHC class I-deficient lymphoma cells nor could they control CMV infection, but they effectively contained Listeria monocytogenes infection. Our results suggest that exocytosis of cytotoxic granules, but not cellular polarization toward targets, depends on intracellular calcium rise during NK cell cytotoxicity. In vivo, PLC-γ2 regulates selective facets of innate immunity because it is essential for NK cell responses to malignant and virally infected cells but not to bacterial infections.


1996 ◽  
Vol 184 (5) ◽  
pp. 2037-2041 ◽  
Author(s):  
W Held ◽  
D Cado ◽  
D H Raulet

Natural killer (NK) cells and some T cells are endowed with receptors specific for class I major histocompatibility complex (MHC) molecules that can inhibit cellular effector functions. The function of the Ly49 receptor family has been studied in vitro, but no gene transfer experiments have directly established the role of these receptors in NK cell functions. We show here that transgenic expression of the H-2Dd-specific Ly49A receptor in all NK cells and T cells conferred class I-specific inhibition of NK cell-mediated target cell lysis as well as of T cell proliferation. Furthermore, transgene expression prevented NK cell-mediated rejection of allogeneic H-2d bone marrow grafts by irradiated mice. These results demonstrate the function and specificity of Ly49 receptors in vivo, and establish that their subset-specific expression is necessary for the discrimination of MHC-different cells by NK cells in unmanipulated mice.


Sign in / Sign up

Export Citation Format

Share Document