scholarly journals Competition-driven evolution of organismal complexity

2019 ◽  
Vol 15 (10) ◽  
pp. e1007388
Author(s):  
Iaroslav Ispolatov ◽  
Evgeniia Alekseeva ◽  
Michael Doebeli
2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Greco Hernández ◽  
Christopher G. Proud ◽  
Thomas Preiss ◽  
Armen Parsyan

Diversity is one of the most remarkable features of living organisms. Current assessments of eukaryote biodiversity reaches 1.5 million species, but the true figure could be several times that number. Diversity is ingrained in all stages and echelons of life, namely, the occupancy of ecological niches, behavioral patterns, body plans and organismal complexity, as well as metabolic needs and genetics. In this review, we will discuss that diversity also exists in a key biochemical process, translation, across eukaryotes. Translation is a fundamental process for all forms of life, and the basic components and mechanisms of translation in eukaryotes have been largely established upon the study of traditional, so-called model organisms. By using modern genome-wide, high-throughput technologies, recent studies of many nonmodel eukaryotes have unveiled a surprising diversity in the configuration of the translation apparatus across eukaryotes, showing that this apparatus is far from being evolutionarily static. For some of the components of this machinery, functional differences between different species have also been found. The recent research reviewed in this article highlights the molecular and functional diversification the translational machinery has undergone during eukaryotic evolution. A better understanding of all aspects of organismal diversity is key to a more profound knowledge of life.


2010 ◽  
Vol 44 (4) ◽  
pp. 363-373 ◽  
Author(s):  
A. V. Markov ◽  
V. A. Anisimov ◽  
A. V. Korotayev

Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 833-838 ◽  
Author(s):  
T Ryan Gregory

Although unrelated to any intuitive notions of organismal complexity, haploid genome sizes (C values) are correlated with a variety of cellular and organismal parameters in different taxa. In some cases, these relationships are universal — notably, genome size correlates positively with cell size in each of the vertebrate classes. Other relationships are apparently relevant only in particular groups. For example, although genome size is inversely correlated with metabolic rate in both mammals and birds, no such relationship is found in amphibians. More recently, it has been suggested that developmental rate and (or) longevity are related to genome size in birds. In the present study, a large dataset was used to examine possible relationships between genome size and various developmental parameters in both birds and mammals. In neither group does development appear to be of relevance to genome size evolution (except perhaps indirectly in birds through the intermediation of body size and (or) within the rodents), a situation very different from that found in amphibians. These findings make it clear that genome size evolution cannot be understood without reference to the particular biology of the organisms under study.Key words: body size, C-value enigma, C-value paradox, fledging, gestation, growth, incubation, lactation, metabolism.


2014 ◽  
Vol 134 (1) ◽  
pp. 1-18 ◽  
Author(s):  
Dafne Eerkes-Medrano ◽  
Colette J. Feehan ◽  
Sally P. Leys

2010 ◽  
Vol 5 (1) ◽  
pp. 59 ◽  
Author(s):  
Yun Jiang ◽  
Cunshuan Xu

2021 ◽  
Vol 9 ◽  
Author(s):  
Amanda N. Robin ◽  
Kaleda K. Denton ◽  
Eva S. Horna Lowell ◽  
Tanner Dulay ◽  
Saba Ebrahimi ◽  
...  

A small number of extraordinary “Major Evolutionary Transitions” (METs) have attracted attention among biologists. They comprise novel forms of individuality and information, and are defined in relation to organismal complexity, irrespective of broader ecosystem-level effects. This divorce between evolutionary and ecological consequences qualifies unicellular eukaryotes, for example, as a MET although they alone failed to significantly alter ecosystems. Additionally, this definition excludes revolutionary innovations not fitting into either MET type (e.g., photosynthesis). We recombine evolution with ecology to explore how and why entire ecosystems were newly created or radically altered – as Major System Transitions (MSTs). In doing so, we highlight important morphological adaptations that spread through populations because of their immediate, direct-fitness advantages for individuals. These are Major Competitive Transitions, or MCTs. We argue that often multiple METs and MCTs must be present to produce MSTs. For example, sexually-reproducing, multicellular eukaryotes (METs) with anisogamy and exoskeletons (MCTs) significantly altered ecosystems during the Cambrian. Therefore, we introduce the concepts of Facilitating Evolutionary Transitions (FETs) and Catalysts as key events or agents that are insufficient themselves to set a MST into motion, but are essential parts of synergies that do. We further elucidate the role of information in MSTs as transitions across five levels: (I) Encoded; (II) Epigenomic; (III) Learned; (IV) Inscribed; and (V) Dark Information. The latter is ‘authored’ by abiotic entities rather than biological organisms. Level IV has arguably allowed humans to produce a MST, and V perhaps makes us a FET for a future transition that melds biotic and abiotic life into one entity. Understanding the interactive processes involved in past major transitions will illuminate both current events and the surprising possibilities that abiotically-created information may produce.


Sign in / Sign up

Export Citation Format

Share Document