scholarly journals Leveraging effect size distributions to improve polygenic risk scores derived from summary statistics of genome-wide association studies

2020 ◽  
Vol 16 (2) ◽  
pp. e1007565 ◽  
Author(s):  
Shuang Song ◽  
Wei Jiang ◽  
Lin Hou ◽  
Hongyu Zhao
2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S103-S103
Author(s):  
Tim Bigdeli ◽  
Ayman Fanous ◽  
Nallakkandi Rajeevan ◽  
Frederick Sayward ◽  
Yuli Li ◽  
...  

Abstract Background Schizophrenia and bipolar disorder are debilitating neuropsychiatric illnesses collectively affecting 2% of the world’s population, and which cause tremendous human suffering that impacts patients, their families and their communities. Recognizing the major impact of these disorders on the psychosocial function of more than 200,000 US Veterans, the Department of Veterans Affairs (VA) recently genotyping of nearly 9,000 veterans with schizophrenia or bipolar I disorder in Cooperative Studies Program (CSP) #572: “Genetics of Functional Disability in Schizophrenia and Bipolar Illness”, all of whom were extensively assessed for neurocognitive function and disability, and genotyped using a custom Affymetrix Axiom Biobank array. Methods Primary genome-wide association studies (GWAS) of schizophrenia and bipolar disorder were performed across and within ancestry goups, with attempted replication in matched subjects from the PGC and Genomic Psychiatry Cohort (GPC). We combined results for CSP#572 with available summary statistics from the PGC, Indonesia Schizophrenia Consortium and Genetic REsearch on schizophreniA neTwork-China and Netherland (GREAT-CN) study, and multi-ethnic GPC cohorts, achieving among the largest and most diverse studies of these disorders to date. Results Polygenic risk scores based on published PGC summary statistics for schizophrenia or bipolar disorder were significantly associated with case status among EA (P<10–30) and AA (P<0.0005) participants in CSP#572. Our primary analyses of schizophrenia yielded a single genome-wide significant association with variants in CHD7 at 8q12.2 for European-American (EA) participants, which remained significant in a joint analysis of EA and African-American (AA) subjects (P=4.62e-08). While no genome-wide significant associations were detected by our within-ancestry analyses of bipolar disorder, a cross-ancestry meta-analysis of CSP#572 participants yielded a significant finding at 10q25 with variants in SORCS3 (P=2.62e-08). Among loci attaining P<0.0001 in our within-ancestry analyses, 4 and 8 subsequently achieved genome-wide significance, respectively, when jointly analyzed with matched subjects from the PGC and GPC. Combining our results with published summary statistics, we performed a cross-ancestry GWAS meta-analysis of 69,280 schizophrenia cases and 138,379 controls, identifying 200 genome-wide significant loci of which 76 are newly reported here. Cross-ancestry analysis of 28,326 bipolar cases and 90,570 controls identified 24 genome-wide significant loci, including novel associations with common variants in PAX5, DOCK2, MACROD2, BRE, KCNG1, and LINC01378. Discussion We newly describe genome-wide analyses in a diverse cohort of US Veterans with schizophrenia or bipolar disorder, benchmarking the predictive value of polygenic risk scores based on published GWAS findings. Leveraging available summary statistics from studies of global populations, we add to burgeoning lists of genomic loci implicated in the etiologies of these disorders.


2018 ◽  
Author(s):  
Roman Teo Oliynyk

AbstractBackgroundGenome-wide association studies and other computational biology techniques are gradually discovering the causal gene variants that contribute to late-onset human diseases. After more than a decade of genome-wide association study efforts, these can account for only a fraction of the heritability implied by familial studies, the so-called “missing heritability” problem.MethodsComputer simulations of polygenic late-onset diseases in an aging population have quantified the risk allele frequency decrease at older ages caused by individuals with higher polygenic risk scores becoming ill proportionately earlier. This effect is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes.ResultsThe incidence rate for late-onset diseases grows exponentially for decades after early onset ages, guaranteeing that the cohorts used for genome-wide association studies overrepresent older individuals with lower polygenic risk scores, whose disease cases are disproportionately due to environmental causes such as old age itself. This mechanism explains the decline in clinical predictive power with age and the lower discovery power of familial studies of heritability and genome-wide association studies. It also explains the relatively constant-with-age heritability found for late-onset diseases of lower prevalence, exemplified by cancers.ConclusionsFor late-onset polygenic diseases showing high cumulative incidence together with high initial heritability, rather than using relatively old age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.


Author(s):  
Tim B Bigdeli ◽  
Ayman H Fanous ◽  
Yuli Li ◽  
Nallakkandi Rajeevan ◽  
Frederick Sayward ◽  
...  

Abstract Background Schizophrenia (SCZ) and bipolar disorder (BIP) are debilitating neuropsychiatric disorders, collectively affecting 2% of the world’s population. Recognizing the major impact of these psychiatric disorders on the psychosocial function of more than 200 000 US Veterans, the Department of Veterans Affairs (VA) recently completed genotyping of more than 8000 veterans with SCZ and BIP in the Cooperative Studies Program (CSP) #572. Methods We performed genome-wide association studies (GWAS) in CSP #572 and benchmarked the predictive value of polygenic risk scores (PRS) constructed from published findings. We combined our results with available summary statistics from several recent GWAS, realizing the largest and most diverse studies of these disorders to date. Results Our primary GWAS uncovered new associations between CHD7 variants and SCZ, and novel BIP associations with variants in Sortilin Related VPS10 Domain Containing Receptor 3 (SORCS3) and downstream of PCDH11X. Combining our results with published summary statistics for SCZ yielded 39 novel susceptibility loci including CRHR1, and we identified 10 additional findings for BIP (28 326 cases and 90 570 controls). PRS trained on published GWAS were significantly associated with case-control status among European American (P < 10–30) and African American (P < .0005) participants in CSP #572. Conclusions We have demonstrated that published findings for SCZ and BIP are robustly generalizable to a diverse cohort of US veterans. Leveraging available summary statistics from GWAS of global populations, we report 52 new susceptibility loci and improved fine-mapping resolution for dozens of previously reported associations.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanyu Liang ◽  
Milton Pividori ◽  
Ani Manichaikul ◽  
Abraham A. Palmer ◽  
Nancy J. Cox ◽  
...  

Abstract Background Polygenic risk scores (PRS) are valuable to translate the results of genome-wide association studies (GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-ancestry leading to poor performance in populations of non-European ancestry. Results We introduce the polygenic transcriptome risk score (PTRS), which is based on predicted transcript levels (rather than SNPs), and explore the portability of PTRS across populations using UK Biobank data. Conclusions We show that PTRS has a significantly higher portability (Wilcoxon p=0.013) in the African-descent samples where the loss of performance is most acute with better performance than PRS when used in combination.


Author(s):  
Lars G. Fritsche ◽  
Snehal Patil ◽  
Lauren J. Beesley ◽  
Peter VandeHaar ◽  
Maxwell Salvatore ◽  
...  

AbstractTo facilitate scientific collaboration on polygenic risk scores (PRS) research, we created an extensive PRS online repository for 49 common cancer traits integrating freely available genome-wide association studies (GWAS) summary statistics from three sources: published GWAS, the NHGRI-EBI GWAS Catalog, and UK Biobank-based GWAS. Our framework condenses these summary statistics into PRS using various approaches such as linkage disequilibrium pruning / p-value thresholding (fixed or data-adaptively optimized thresholds) and penalized, genome-wide effect size weighting. We evaluated the PRS in two biobanks: the Michigan Genomics Initiative (MGI), a longitudinal biorepository effort at Michigan Medicine, and the population-based UK Biobank (UKB). For each PRS construct, we provide measures on predictive performance, calibration, and discrimination. Besides PRS evaluation, the Cancer-PRSweb platform features construct downloads and phenome-wide PRS association study results (PRS-PheWAS) for predictive PRS. We expect this integrated platform to accelerate PRS-related cancer research.


2017 ◽  
Author(s):  
Yan Zhang ◽  
Guanghao Qi ◽  
Ju-Hyun Park ◽  
Nilanjan Chatterjee

AbstractSummary-level statistics from genome-wide association studies are now widely used to estimate heritability and co-heritability of traits using the popular linkage-disequilibrium-score (LD-score) regression method. We develop a likelihood-based approach for analyzing summary-level statistics and external LD information to estimate common variants effect-size distributions, characterized by proportion of underlying susceptibility SNPs and a flexible normal-mixture model for their effects. Analysis of summary-level results across 32 GWAS reveals that while all traits are highly polygenic, there is wide diversity in the degrees of polygenicity. The effect-size distributions for susceptibility SNPs could be adequately modeled by a single normal distribution for traits related to mental health and ability and by a mixture of two normal distributions for all other traits. Among quantitative traits, we predict the sample sizes needed to identify SNPs which explain 80% of GWAS heritability to be between 300K-500K for some of the early growth traits, between 1-2 million for some anthropometric and cholesterol traits and multiple millions for body mass index and some others. The corresponding predictions for disease traits are between 200K-400K for inflammatory bowel diseases, close to one million for a variety of adult onset chronic diseases and between 1-2 million for psychiatric diseases.


Sign in / Sign up

Export Citation Format

Share Document