scholarly journals Genome‐wide association studies and polygenic risk scores for skin cancer: clinically useful yet?

2019 ◽  
Vol 181 (6) ◽  
pp. 1146-1155 ◽  
Author(s):  
M.R. Roberts ◽  
M.M. Asgari ◽  
A.E. Toland
2018 ◽  
Author(s):  
Roman Teo Oliynyk

AbstractBackgroundGenome-wide association studies and other computational biology techniques are gradually discovering the causal gene variants that contribute to late-onset human diseases. After more than a decade of genome-wide association study efforts, these can account for only a fraction of the heritability implied by familial studies, the so-called “missing heritability” problem.MethodsComputer simulations of polygenic late-onset diseases in an aging population have quantified the risk allele frequency decrease at older ages caused by individuals with higher polygenic risk scores becoming ill proportionately earlier. This effect is most prominent for diseases characterized by high cumulative incidence and high heritability, examples of which include Alzheimer’s disease, coronary artery disease, cerebral stroke, and type 2 diabetes.ResultsThe incidence rate for late-onset diseases grows exponentially for decades after early onset ages, guaranteeing that the cohorts used for genome-wide association studies overrepresent older individuals with lower polygenic risk scores, whose disease cases are disproportionately due to environmental causes such as old age itself. This mechanism explains the decline in clinical predictive power with age and the lower discovery power of familial studies of heritability and genome-wide association studies. It also explains the relatively constant-with-age heritability found for late-onset diseases of lower prevalence, exemplified by cancers.ConclusionsFor late-onset polygenic diseases showing high cumulative incidence together with high initial heritability, rather than using relatively old age-matched cohorts, study cohorts combining the youngest possible cases with the oldest possible controls may significantly improve the discovery power of genome-wide association studies.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Yanyu Liang ◽  
Milton Pividori ◽  
Ani Manichaikul ◽  
Abraham A. Palmer ◽  
Nancy J. Cox ◽  
...  

Abstract Background Polygenic risk scores (PRS) are valuable to translate the results of genome-wide association studies (GWAS) into clinical practice. To date, most GWAS have been based on individuals of European-ancestry leading to poor performance in populations of non-European ancestry. Results We introduce the polygenic transcriptome risk score (PTRS), which is based on predicted transcript levels (rather than SNPs), and explore the portability of PTRS across populations using UK Biobank data. Conclusions We show that PTRS has a significantly higher portability (Wilcoxon p=0.013) in the African-descent samples where the loss of performance is most acute with better performance than PRS when used in combination.


2020 ◽  
Vol 4 (3) ◽  
Author(s):  
Guochong Jia ◽  
Yingchang Lu ◽  
Wanqing Wen ◽  
Jirong Long ◽  
Ying Liu ◽  
...  

Abstract Background Genome-wide association studies have identified common genetic risk variants in many loci associated with multiple cancers. We sought to systematically evaluate the utility of these risk variants in identifying high-risk individuals for eight common cancers. Methods We constructed polygenic risk scores (PRS) using genome-wide association studies–identified risk variants for each cancer. Using data from 400 812 participants of European descent in a population-based cohort study, UK Biobank, we estimated hazard ratios associated with PRS using Cox proportional hazard models and evaluated the performance of the PRS in cancer risk prediction and their ability to identify individuals at more than a twofold elevated risk, a risk level comparable to a moderate-penetrance mutation in known cancer predisposition genes. Results During a median follow-up of 5.8 years, 14 584 incident case patients of cancers were identified (ranging from 358 epithelial ovarian cancer case patients to 4430 prostate cancer case patients). Compared with those at an average risk, individuals among the highest 5% of the PRS had a two- to threefold elevated risk for cancer of the prostate, breast, pancreas, colorectal, or ovary, and an approximately 1.5-fold elevated risk of cancer of the lung, bladder, or kidney. The areas under the curve ranged from 0.567 to 0.662. Using PRS, 40.4% of the study participants can be classified as having more than a twofold elevated risk for at least one site-specific cancer. Conclusions A large proportion of the general population can be identified at an elevated cancer risk by PRS, supporting the potential clinical utility of PRS for personalized cancer risk prediction.


2020 ◽  
Vol 46 (Supplement_1) ◽  
pp. S103-S103
Author(s):  
Tim Bigdeli ◽  
Ayman Fanous ◽  
Nallakkandi Rajeevan ◽  
Frederick Sayward ◽  
Yuli Li ◽  
...  

Abstract Background Schizophrenia and bipolar disorder are debilitating neuropsychiatric illnesses collectively affecting 2% of the world’s population, and which cause tremendous human suffering that impacts patients, their families and their communities. Recognizing the major impact of these disorders on the psychosocial function of more than 200,000 US Veterans, the Department of Veterans Affairs (VA) recently genotyping of nearly 9,000 veterans with schizophrenia or bipolar I disorder in Cooperative Studies Program (CSP) #572: “Genetics of Functional Disability in Schizophrenia and Bipolar Illness”, all of whom were extensively assessed for neurocognitive function and disability, and genotyped using a custom Affymetrix Axiom Biobank array. Methods Primary genome-wide association studies (GWAS) of schizophrenia and bipolar disorder were performed across and within ancestry goups, with attempted replication in matched subjects from the PGC and Genomic Psychiatry Cohort (GPC). We combined results for CSP#572 with available summary statistics from the PGC, Indonesia Schizophrenia Consortium and Genetic REsearch on schizophreniA neTwork-China and Netherland (GREAT-CN) study, and multi-ethnic GPC cohorts, achieving among the largest and most diverse studies of these disorders to date. Results Polygenic risk scores based on published PGC summary statistics for schizophrenia or bipolar disorder were significantly associated with case status among EA (P<10–30) and AA (P<0.0005) participants in CSP#572. Our primary analyses of schizophrenia yielded a single genome-wide significant association with variants in CHD7 at 8q12.2 for European-American (EA) participants, which remained significant in a joint analysis of EA and African-American (AA) subjects (P=4.62e-08). While no genome-wide significant associations were detected by our within-ancestry analyses of bipolar disorder, a cross-ancestry meta-analysis of CSP#572 participants yielded a significant finding at 10q25 with variants in SORCS3 (P=2.62e-08). Among loci attaining P<0.0001 in our within-ancestry analyses, 4 and 8 subsequently achieved genome-wide significance, respectively, when jointly analyzed with matched subjects from the PGC and GPC. Combining our results with published summary statistics, we performed a cross-ancestry GWAS meta-analysis of 69,280 schizophrenia cases and 138,379 controls, identifying 200 genome-wide significant loci of which 76 are newly reported here. Cross-ancestry analysis of 28,326 bipolar cases and 90,570 controls identified 24 genome-wide significant loci, including novel associations with common variants in PAX5, DOCK2, MACROD2, BRE, KCNG1, and LINC01378. Discussion We newly describe genome-wide analyses in a diverse cohort of US Veterans with schizophrenia or bipolar disorder, benchmarking the predictive value of polygenic risk scores based on published GWAS findings. Leveraging available summary statistics from studies of global populations, we add to burgeoning lists of genomic loci implicated in the etiologies of these disorders.


2020 ◽  
Vol 5 ◽  
pp. 206
Author(s):  
Mathilde Boecker ◽  
Alvina G. Lai

Over the past three decades, the number of people globally with diabetes mellitus has more than doubled. It is estimated that by 2030, 439 million people will be suffering from the disease, 90-95% of whom will have type 2 diabetes (T2D). In 2017, 5 million deaths globally were attributable to T2D, placing it in the top 10 global causes of death. Because T2D is a result of both genetic and environmental factors, identification of individuals with high genetic risk can help direct early interventions to prevent progression to more serious complications. Genome-wide association studies have identified ~400 variants associated with T2D that can be used to calculate polygenic risk scores (PRS). Although PRSs are not currently more accurate than clinical predictors and do not yet predict risk with equal accuracy across all ethnic populations, they have several potential clinical uses. Here, we discuss potential usages of PRS for predicting T2D and for informing and optimising interventions. We also touch on possible health inequality risks of PRS and the feasibility of large-scale implementation of PRS in clinical practice. Before PRSs can be used as a therapeutic tool, it is important that further polygenic risk models are derived using non-European genome-wide association studies to ensure that risk prediction is accurate for all ethnic groups. Furthermore, it is essential that the ethical, social and legal implications of PRS are considered before their implementation in any context.


Author(s):  
Tim B Bigdeli ◽  
Ayman H Fanous ◽  
Yuli Li ◽  
Nallakkandi Rajeevan ◽  
Frederick Sayward ◽  
...  

Abstract Background Schizophrenia (SCZ) and bipolar disorder (BIP) are debilitating neuropsychiatric disorders, collectively affecting 2% of the world’s population. Recognizing the major impact of these psychiatric disorders on the psychosocial function of more than 200 000 US Veterans, the Department of Veterans Affairs (VA) recently completed genotyping of more than 8000 veterans with SCZ and BIP in the Cooperative Studies Program (CSP) #572. Methods We performed genome-wide association studies (GWAS) in CSP #572 and benchmarked the predictive value of polygenic risk scores (PRS) constructed from published findings. We combined our results with available summary statistics from several recent GWAS, realizing the largest and most diverse studies of these disorders to date. Results Our primary GWAS uncovered new associations between CHD7 variants and SCZ, and novel BIP associations with variants in Sortilin Related VPS10 Domain Containing Receptor 3 (SORCS3) and downstream of PCDH11X. Combining our results with published summary statistics for SCZ yielded 39 novel susceptibility loci including CRHR1, and we identified 10 additional findings for BIP (28 326 cases and 90 570 controls). PRS trained on published GWAS were significantly associated with case-control status among European American (P < 10–30) and African American (P < .0005) participants in CSP #572. Conclusions We have demonstrated that published findings for SCZ and BIP are robustly generalizable to a diverse cohort of US veterans. Leveraging available summary statistics from GWAS of global populations, we report 52 new susceptibility loci and improved fine-mapping resolution for dozens of previously reported associations.


2019 ◽  
Vol 29 (3) ◽  
pp. 513-516 ◽  
Author(s):  
Megan C. Roberts ◽  
Muin J. Khoury ◽  
George A. Mensah

Polygenic risk scores (PRS) are an emerging precision medicine tool based on multiple gene variants that, taken alone, have weak associations with disease risks, but collec­tively may enhance disease predictive value in the population. However, the benefit of PRS may not be equal among non-European populations, as they are under-represented in genome-wide association studies (GWAS) that serve as the basis for PRS develop­ment. In this perspective, we discuss a path forward, which includes: 1) inclusion of underrepresented populations in PRS research; 2) global efforts to build capacity for genomic research; 3) equitable imple­mentation of these tools in clinical practice; and 4) traditional public health approaches to reduce risk of adverse health outcomes as an important component to precision health. As precision medicine is imple­mented in clinical care, researchers must ensure that advances from PRS research will benefit all.Ethn Dis.2019;29(3):513-516; doi:10.18865/ed.29.3.513.


2020 ◽  
Vol 38 (15_suppl) ◽  
pp. 1528-1528
Author(s):  
Heena Desai ◽  
Anh Le ◽  
Ryan Hausler ◽  
Shefali Verma ◽  
Anurag Verma ◽  
...  

1528 Background: The discovery of rare genetic variants associated with cancer have a tremendous impact on reducing cancer morbidity and mortality when identified; however, rare variants are found in less than 5% of cancer patients. Genome wide association studies (GWAS) have identified hundreds of common genetic variants significantly associated with a number of cancers, but the clinical utility of individual variants or a polygenic risk score (PRS) derived from multiple variants is still unclear. Methods: We tested the ability of polygenic risk score (PRS) models developed from genome-wide significant variants to differentiate cases versus controls in the Penn Medicine Biobank. Cases for 15 different cancers and cancer-free controls were identified using electronic health record billing codes for 11,524 European American and 5,994 African American individuals from the Penn Medicine Biobank. Results: The discriminatory ability of the 15 PRS models to distinguish their respective cancer cases versus controls ranged from 0.68-0.79 in European Americans and 0.74-0.93 in African Americans. Seven of the 15 cancer PRS trended towards an association with their cancer at a p<0.05 (Table), and PRS for prostate, thyroid and melanoma were significantly associated with their cancers at a bonferroni corrected p<0.003 with OR 1.3-1.6 in European Americans. Conclusions: Our data demonstrate that common variants with significant associations from GWAS studies can distinguish cancer cases versus controls for some cancers in an unselected biobank population. Given the small effects, future studies are needed to determine how best to incorporate PRS with other risk factors in the precision prediction of cancer risk. [Table: see text]


Sign in / Sign up

Export Citation Format

Share Document