scholarly journals Adaptive social contact rates induce complex dynamics during epidemics

2021 ◽  
Vol 17 (2) ◽  
pp. e1008639
Author(s):  
Ronan F. Arthur ◽  
James H. Jones ◽  
Matthew H. Bonds ◽  
Yoav Ram ◽  
Marcus W. Feldman

Epidemics may pose a significant dilemma for governments and individuals. The personal or public health consequences of inaction may be catastrophic; but the economic consequences of drastic response may likewise be catastrophic. In the face of these trade-offs, governments and individuals must therefore strike a balance between the economic and personal health costs of reducing social contacts and the public health costs of neglecting to do so. As risk of infection increases, potentially infectious contact between people is deliberately reduced either individually or by decree. This must be balanced against the social and economic costs of having fewer people in contact, and therefore active in the labor force or enrolled in school. Although the importance of adaptive social contact on epidemic outcomes has become increasingly recognized, the most important properties of coupled human-natural epidemic systems are still not well understood. We develop a theoretical model for adaptive, optimal control of the effective social contact rate using traditional epidemic modeling tools and a utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic strategic model reveals the existence of an endemic equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for any epidemic in which adaptive behavior influences infectious disease dynamics include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.

2020 ◽  
Author(s):  
Ronan F. Arthur ◽  
James H. Jones ◽  
Matthew H. Bonds ◽  
Yoav Ram ◽  
Marcus W. Feldman

AbstractThe COVID-19 pandemic has posed a significant dilemma for governments across the globe. The public health consequences of inaction are catastrophic; but the economic consequences of drastic action are likewise catastrophic. Governments must therefore strike a balance in the face of these trade-offs. But with critical uncertainty about how to find such a balance, they are forced to experiment with their interventions and await the results of their experimentation. Models have proved inaccurate because behavioral response patterns are either not factored in or are hard to predict. One crucial behavioral response in a pandemic is adaptive social contact: potentially infectious contact between people is deliberately reduced either individually or by fiat; and this must be balanced against the economic cost of having fewer people in contact and therefore active in the labor force. We develop a model for adaptive optimal control of the effective social contact rate within a Susceptible-Infectious-Susceptible (SIS) epidemic model using a dynamic utility function with delayed information. This utility function trades off the population-wide contact rate with the expected cost and risk of increasing infections. Our analytical and computational analysis of this simple discrete-time deterministic model reveals the existence of a non-zero equilibrium, oscillatory dynamics around this equilibrium under some parametric conditions, and complex dynamic regimes that shift under small parameter perturbations. These results support the supposition that infectious disease dynamics under adaptive behavior-change may have an indifference point, may produce oscillatory dynamics without other forcing, and constitute complex adaptive systems with associated dynamics. Implications for COVID-19 include an expectation of fluctuations, for a considerable time, around a quasi-equilibrium that balances public health and economic priorities, that shows multiple peaks and surges in some scenarios, and that implies a high degree of uncertainty in mathematical projections.Author summaryEpidemic response in the form of social contact reduction, such as has been utilized during the ongoing COVID-19 pandemic, presents inherent tradeoffs between the economic costs of reducing social contacts and the public health costs of neglecting to do so. Such tradeoffs introduce an interactive, iterative mechanism which adds complexity to an infectious disease system. Consequently, infectious disease modeling typically has not included dynamic behavior change that must address such a tradeoff. Here, we develop a theoretical model that introduces lost or gained economic and public health utility through the adjustment of social contact rates with delayed information. We find this model produces an equilibrium, a point of indifference where the tradeoff is neutral, and at which a disease will be endemic for a long period of time. Under small perturbations, this model exhibits complex dynamic regimes, including oscillatory behavior, runaway exponential growth, and eradication. These dynamics suggest that for epidemic response that relies on social contact reduction, secondary waves and surges with accompanied business re-closures and shutdowns may be expected, and that accurate projection under such circumstances is unlikely.


Epidemics ◽  
2018 ◽  
Vol 22 ◽  
pp. 56-61 ◽  
Author(s):  
Sebastian Funk ◽  
Anton Camacho ◽  
Adam J. Kucharski ◽  
Rosalind M. Eggo ◽  
W. John Edmunds

2019 ◽  
Vol 7 (8) ◽  
pp. 277
Author(s):  
Yong-jun Chen ◽  
Qing Liu ◽  
Cheng-peng Wan

Accidents occur frequently in traffic-intensive waters, which restrict the safe and rapid development of the shipping industry. Due to the suddenness, randomness, and uncertainty of accidents in traffic-intensive waters, the probability of the risk factors causing traffic accidents is usually high. Thus, properly analyzing those key risk factors is of great significance to improve the safety of shipping. Based on the analysis of influencing factors of ship navigational risks in traffic-intensive waters, this paper proposes a cloud model to excavate the factors affecting navigational risk, which could accurately screen out the key risk factors. Furthermore, the risk causal model of ship navigation in traffic-intensive waters is constructed by using the infectious disease dynamics method in order to model the key risk causal transmission process. Moreover, an empirical study of the Yangtze River estuary is conducted to illustrate the feasibility of the proposed models. The research results show that the cloud model is useful in screening the key risk factors, and the constructed causal model of ship navigational risks in traffic-intensive waters is able to provide accurate analysis of the transmission process of key risk factors, which can be used to reduce the navigational risk of ships in traffic-intensive waters. This research provides both theoretical basis and practical reference for regulators in the risk management and control of ships in traffic-intensive waters.


2020 ◽  
Vol 14 (1) ◽  
pp. 57-89 ◽  
Author(s):  
Sheryl L. Chang ◽  
Mahendra Piraveenan ◽  
Philippa Pattison ◽  
Mikhail Prokopenko

PLoS ONE ◽  
2013 ◽  
Vol 8 (4) ◽  
pp. e58802 ◽  
Author(s):  
Gonzalo M. Vazquez-Prokopec ◽  
Donal Bisanzio ◽  
Steven T. Stoddard ◽  
Valerie Paz-Soldan ◽  
Amy C. Morrison ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document