scholarly journals Cathepsin B in Antigen-Presenting Cells Controls Mediators of the Th1 Immune Response during Leishmania major Infection

2014 ◽  
Vol 8 (9) ◽  
pp. e3194 ◽  
Author(s):  
Iris J. Gonzalez-Leal ◽  
Bianca Röger ◽  
Angela Schwarz ◽  
Tanja Schirmeister ◽  
Thomas Reinheckel ◽  
...  
2018 ◽  
Vol 41 (9) ◽  
pp. 385-398 ◽  
Author(s):  
Christian Merz ◽  
Jaromir Sykora ◽  
Viola Marschall ◽  
David M. Richards ◽  
Karl Heinonen ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Juliana Maria Motta ◽  
Vivian Mary Rumjanek

Dendritic cells are antigen-presenting cells capable of either activating the immune response or inducing and maintaining immune tolerance. They do this by integrating stimuli from the environment and changing their functional status as a result of plasticity. The modifications suffered by these cells have consequences in the way the organism may respond. In the present work two opposing situations known to affect dendritic cells are analyzed: tumor growth, leading to a microenvironment that favors the induction of a tolerogenic profile, and organ transplantation, which leads to a proinflammatory profile. Lessons learned from these situations may help to understand the mechanisms of modulation resulting not only from the above circumstances, but also from other pathologies.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 2587-2587
Author(s):  
Hideto Matsui ◽  
Margareth Ozelo ◽  
Carol Hegadorn ◽  
Andrea Labelle ◽  
Erin Burnett ◽  
...  

Abstract Hemophilia A is an excellent candidate disorder for the use of gene therapy as a treatment modality. To date, although lentiviral delivery of the factor VIII (FVIII) transgene has the potential to provide sustained therapeutic correction of the hemophilia A phenotype, this has not been achieved in adult animals because of the anti-FVIII immune response. We have used lentiviral vectors to deliver the canine FVIII transgene to hemophilia A neonates and although no anti-FVIII immune response occurred, and indeed the treated mice displayed long-term tolerance to the canine FVIII antigen, this strategy did not provide sustained therapeutic levels of plasma FVIII. To overcome these limitations, we modified our lentiviral vector and the protocol for viral delivery to enhance transduction of hepatocytes and direct transgene expression away from antigen presenting cells. We engineered lentiviral vectors that encode the B-domain deleted canine FVIII cDNA under the transcriptional control of either a non-viral ubiquitous promoter or two different liver-restricted promoters. However, no plasma FVIII was detected in any of the adult hemophilia A mice after intravenous injection of the various lentiviral vectors because of an anti-canine FVIII immune response. An alternate pseudotype (GP64) was used to enhance transduction of hepatocytes and a target sequence for a hematopoietic-specific microRNA was incorporated into the transgene to prevent FVIII expression in antigen presenting cells that may arise from promoter trapping. When hemophilia A mice received intravenous infusions of these modified vectors, where the cFVIII trangene is under the control of either of the liver-restricted promoters, all treated mice (n=4) showed sustained FVIII expression (mean FVIII levels 28.2±2.4 mU/mL) for more than 150 days (last time analyzed) without developing anti-FVIII antibodies. Moreover, temporary depletion of Kuppfer cells prior to viral administration resulted in a 3-fold elevation of levels of plasma FVIII (mean FVIII levels 83.3±2.1mU/mL; n=4). Analysis of the biodistribution of the integrated FVIII transgene and expression of canine FVIII mRNA indicate an enhanced restriction of FVIII expression in hepatocytes with the use of the modified lentiviral vectors. These results demonstrate, for the first time, the long-term therapeutic potential of modified lentiviral vectors for treating adult pre-clinical animal models of hemophilia A.


1997 ◽  
Vol 56 ◽  
pp. 433
Author(s):  
Y. Maekawa ◽  
T. Dainichi ◽  
H. Ishikawa ◽  
H. Hisaeda ◽  
T. Sakai ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document