scholarly journals Comprehensive Transcriptome Meta-analysis to Characterize Host Immune Responses in Helminth Infections

2016 ◽  
Vol 10 (4) ◽  
pp. e0004624 ◽  
Author(s):  
Guangyan Zhou ◽  
Mary M. Stevenson ◽  
Timothy G. Geary ◽  
Jianguo Xia
2020 ◽  
Vol 16 (11) ◽  
pp. e1008438
Author(s):  
Chiara Vanalli ◽  
Lorenzo Mari ◽  
Lorenzo Righetto ◽  
Renato Casagrandi ◽  
Marino Gatto ◽  
...  

Variation in the intensity and duration of infections is often driven by variation in the network and strength of host immune responses. While many of the immune mechanisms and components are known for parasitic helminths, how these relationships change from single to multiple infections and impact helminth dynamics remains largely unclear. Here, we used laboratory data from a rabbit-helminth system and developed a within-host model of infection to investigate different scenarios of immune regulation in rabbits infected with one or two helminth species. Model selection suggests that the immunological pathways activated against Trichostrongylus retortaeformis and Graphidium strigosum are similar. However, differences in the strength of these immune signals lead to the contrasting dynamics of infections, where the first parasite is rapidly cleared and the latter persists with high intensities. In addition to the reactions identified in single infections, rabbits with both helminths also activate new pathways that asymmetrically affect the dynamics of the two species. These new signals alter the intensities but not the general trend of the infections. The type of interactions described can be expected in many other host-helminth systems. Our immune framework is flexible enough to capture different mechanisms and their complexity, and provides essential insights to the understanding of multi-helminth infections.


Parasitology ◽  
1988 ◽  
Vol 96 (S1) ◽  
pp. S123-S166 ◽  
Author(s):  
M. W. Lightowlers ◽  
M. D. Rickard

SUMMARYParasitic helminths excrete or secrete (ES) a variety of molecules into their mammalian hosts. The effects of these ES products on the host's immune responses are reviewed. Investigations into the source of antigenic or immunoregulatory ES products have identified the cuticular and tegumental surfaces of some nematodes and trematodes respectively as being important sources of ES products; other ES molecules are released through specialized excretory or secretory organs. It is proposed that the active shedding of surface antigens may serve as an important source of parasite antigens available to the immune system in a form in which they can be taken up and processed by antigen-presenting dendritic cells, macro-phages and certain B cells for presentation to T helper cells. The ES products of nematodes, trematodes and cestodes contribute to immune evasion strategies of the parasites through mechanisms including shedding of surface-bound ligands and cells, alteration of lymphocyte, macrophage and granulocyte functions and modulation of complement and other host inflammatory responses. Immunopathology may be induced by ES products as in the development of granulomas around entrapped schistosome eggs. In some host – parasite systems ES antigens may induce host-protective immune responses and this source of protective antigens has been utilized in the successful vaccination against helminth infections, particularly against infection with trichurid nematodes and the metacestode stage of cestode parasites. The use of ES antigens in immunodiagnosis of helminth infection is also briefly discussed.


2020 ◽  
Vol 11 (SPL1) ◽  
pp. 546-549
Author(s):  
Shweta Dadarao Parwe ◽  
Milind Abhimanyu Nisargandha ◽  
Rishikesh Thakre

Hitherto, there is no proper line of treatment for the new (nCOVID19). The development of unique antiviral drugs has taken precedence. Therapeutic antibodies () will be a significantly beneficial agent against nCOVID-19. Here the host immune responses to new discussed in this review provide strategy and further treatment and understanding of clinical interventions against nCOVID-19. Plasma therapy uses the antibodies found in the blood of people recovering (or convalesced) from an infection to treat infected patients. When an infection occurs, the body begins producing proteins specially made to kill the germ, called antibodies. Those antibodies coat specifically plasma in the blood of survivors, the yellow transparent liquid blood portion for months or even years. research assesses plasma use from Convalescent patients of infected with nCOVID-19 as a possible preventive treatment. But it is not yet recommended as a line of treatment, and it is used as a clinical trial in the new in Indian population.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e040426
Author(s):  
Gyaviira Nkurunungi ◽  
Ludoviko Zirimenya ◽  
Jacent Nassuuna ◽  
Agnes Natukunda ◽  
Prossy N Kabuubi ◽  
...  

IntroductionSeveral licensed and investigational vaccines have lower efficacy, and induce impaired immune responses, in low-income versus high-income countries and in rural, versus urban, settings. Understanding these population differences is essential to optimising vaccine effectiveness in the tropics. We suggest that repeated exposure to and immunomodulation by chronic helminth infections partly explains population differences in vaccine response.Methods and analysisWe have designed an individually randomised, parallel group trial of intensive versus standard praziquantel (PZQ) intervention against schistosomiasis, to determine effects on vaccine response outcomes among school-going adolescents (9–17 years) from rural Schistosoma mansoni-endemic Ugandan islands. Vaccines to be studied comprise BCG on day ‘zero’; yellow fever, oral typhoid and human papilloma virus (HPV) vaccines at week 4; and HPV and tetanus/diphtheria booster vaccine at week 28. The intensive arm will receive PZQ doses three times, each 2 weeks apart, before BCG immunisation, followed by a dose at week 8 and quarterly thereafter. The standard arm will receive PZQ at week 8 and 52. We expect to enrol 480 participants, with 80% infected with S. mansoni at the outset.Primary outcomes are BCG-specific interferon-γ ELISpot responses 8 weeks after BCG immunisation and for other vaccines, antibody responses to key vaccine antigens at 4 weeks after immunisation. Secondary analyses will determine the effects of intensive anthelminthic treatment on correlates of protective immunity, on waning of vaccine response, on priming versus boosting immunisations and on S. mansoni infection status and intensity. Exploratory immunology assays using archived samples will enable assessment of mechanistic links between helminths and vaccine responses.Ethics and disseminationEthics approval has been obtained from relevant ethics committes of Uganda and UK. Results will be shared with Uganda Ministry of Health, relevant district councils, community leaders and study participants. Further dissemination will be done through conference proceedings and publications.Trial registration numberISRCTN60517191.


Author(s):  
Shaoshuai Liu ◽  
Maria Jose Ladera-Carmona ◽  
Minna M. Poranen ◽  
Aart J. E. van Bel ◽  
Karl-Heinz Kogel ◽  
...  

AbstractMacrophage migration inhibitory factors (MIFs) are multifunctional proteins regulating major processes in mammals, including activation of innate immune responses. In invertebrates, MIF proteins participate in the modulation of host immune responses when secreted by parasitic organisms, such as aphids. In this study, we assessed the possibility to use MIF genes as targets for RNA interference (RNAi)-based control of the grain aphid Sitobion avenae (Sa) on barley (Hordeum vulgare). When nymphs were fed on artificial diet containing double-stranded (ds)RNAs (SaMIF-dsRNAs) that target sequences of the three MIF genes SaMIF1, SaMIF2 and SaMIF3, they showed higher mortality rates and these rates correlated with reduced MIF transcript levels as compared to the aphids feeding on artificial diet containing a control dsRNA (GFP-dsRNA). Comparison of different feeding strategies showed that nymphs’ survival was not altered when they fed from barley seedlings sprayed with naked SaMIF-dsRNAs, suggesting they did not effectively take up dsRNA from the sieve tubes of these plants. Furthermore, aphids’ survival was also not affected when the nymphs fed on leaves supplied with dsRNA via basal cut ends of barley leaves. Consistent with this finding, the use of sieve tube-specific YFP-labeled Arabidopsis reporter lines confirmed that fluorescent 21 nt dsRNACy3, when supplied via petioles or spraying, co-localized with xylem structures, but not with phloem tissue. Our results suggest that MIF genes are a potential target for insect control and also imply that application of naked dsRNA to plants for aphid control is inefficient. More efforts should be put into the development of effective dsRNA formulations.


Sign in / Sign up

Export Citation Format

Share Document