scholarly journals Insecticide resistance in dengue vectors from hotspots in Selangor, Malaysia

2021 ◽  
Vol 15 (3) ◽  
pp. e0009205
Author(s):  
Rosilawati Rasli ◽  
Yoon Ling Cheong ◽  
M. Khairuddin Che Ibrahim ◽  
Siti Futri Farahininajua Fikri ◽  
Rusydi Najmuddin Norzali ◽  
...  

Background In Malaysia, dengue remains a top priority disease and usage of insecticides is the main method for dengue vector control. Limited baseline insecticide resistance data in dengue hotspots has prompted us to conduct this study. The present study reports the use of a map on the insecticide susceptibility status of Aedes aegypti and Aedes albopictus to provide a quick visualization and overview of the distribution of insecticide resistance. Method and results The insecticide resistance status of Aedes populations collected from 24 dengue hotspot areas from the period of December 2018 until June 2019 was proactively monitored using the World Health Organization standard protocol for adult and larval susceptibility testing was conducted, together with elucidation of the mechanisms involved in observed resistance. For resistance monitoring, susceptibility to three adulticides (permethrin, deltamethrin, and malathion) was tested, as well as susceptibility to the larvicide, temephos. Data showed significant resistance to both deltamethrin and permethrin (pyrethroid insecticides), and to malathion (organophosphate insecticide) in all sampled Aedes aegypti populations, while variable resistance patterns were found in the sampled Aedes albopictus populations. Temephos resistance was observed when larvae were tested using the diagnostic dosage of 0.012mg/L but not at the operational dosage of 1mg/L for both species. Conclusion The present study highlights evidence of a potential threat to the effectiveness of insecticides currently used in dengue vector control, and the urgent requirement for insecticide resistance management to be integrated into the National Dengue Control Program.

2011 ◽  
Vol 106 (3) ◽  
pp. 346-352 ◽  
Author(s):  
Isabelle Dusfour ◽  
Véronique Thalmensy ◽  
Pascal Gaborit ◽  
Jean Issaly ◽  
Romuald Carinci ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Rasika Dalpadado ◽  
Nayana Gunathilaka ◽  
Deepika Amarasinghe ◽  
Lahiru Udayanaga

Background. To date, dengue is considered an important public health problem in Sri Lanka. Irrational use of insecticides without evidence-based applications has primed the development of resistance in mosquito vectors. Method. The present study investigated the resistance status of Aedes aegypti and Aedes albopictus to commonly used insecticides in three selected Medical Officer of Health (MOH) areas (i.e., Attanagalla, Dompe, and Negombo) in Gampaha District, Western Province of Sri Lanka. Entomological surveys were performed using ovitraps and larval collections. Larval bioassays were carried out to determine the LC50, LC90, and LC95 and susceptibility status for organophosphate temephos, whereas adult bioassays were performed to test the 0.03% deltamethrin and 0.8% malathion susceptibility. Results. The study revealed that the temephos concentrations required to control Ae. aegypti (13.7-17.7 times) and Ae. albopictus (4.6-7.6 times) are higher than the diagnostic concentration (0.012 mg/L) proposed by the World Health Organization. The highest resistance levels were observed for both Ae. aegypti ( 14 ± 1.87 ) and Ae. albopictus ( 36 ± 1.87 ) collected from the Negombo MOH area. Therefore, the WHO recommended diagnostic concentration is no longer effective in controlling Ae. aegypti and Ae. albopictus larvae in these areas. Both the dengue vectors have evolved a high level of insecticide resistance to malathion and deltamethrin in the Gampaha District except Ae. albopictus mosquitoes in rural areas. Further, vectors in rural areas are indicated susceptible (>98%) to pyrethroids and emergence of resistance (<97%) for organophosphate insecticides. Conclusion. The results of this study warrant the vector management authorities on the proper application of insecticides and rational use in vector control. The susceptibility status of vector mosquitoes should be continuously monitored especially in dengue-endemic areas parallel to the routine surveillance programme. Further molecular studies are strongly recommended to determine the Knockdown Resistance (kdr) mutations among Aedes populations.


2012 ◽  
Vol 5 (3) ◽  
pp. 223-226
Author(s):  
Eduardo Dias Wermelinger ◽  
Adilson Benedito Almeida ◽  
Ciro Villanova Benigno ◽  
Aldo Pacheco Ferreira

Esse estudo avaliou a produtividade dos criadouros de Aedes aegypti (Linnaeus) e Aedes albopictus (Skuse) no município de Parati através dos dados da vigilância entomológica obtidos pelos métodos preconizados pelo Programa Nacional de Controle da Dengue (PNCD). O maior número de pupas de A. aegypti foi coletado nos ralos (31%), garrafas e latas (23%); e com A. albopictus o maior número foi nas garrafas, latas (24%) e vasos de planta (21%). Do total de pupas obtidas, 84,3% e 79,3% das pupas de A. aegypti e A. albopictus respectivamente foram coletadas em pequenos reservatórios: garrafas, vasos de plantas, pneus, bromélias, oco de árvores e ralos. Essas produtividades contradizem a literatura e podem ser explicadas pelas limitações de acesso aos grandes reservatórios e falha na capacitação dos agentes. Esse estudo chama atenção para a importância que os pequenos reservatórios podem ter na densidade do vetor no meio urbano nacional e conclui que a metodologia de vigilância entomológica usada tem sido ineficaz para identificar os grandes e mais produtivos criadouros. Essa conclusão sugere que essa ineficácia pode ser um fator importante pelos insucessos no combate a dengue no Brasil. Evaluation of Breeding Productivity from Surveillance Data for Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in Parati, RJ, Brazil Abstract. This study evaluated the pupa-productivity of the entomologic surveillance according methodology used by the official Program for Dengue Control in Brazil (PDCB) for Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) in Parati, RJ, Brazil. The highest number of A. aegypti pupae were found in drains (31%), bottles and cans (23%); and the highest number of A. albopictus pupae were found in bottles and cans (24%), and plant vases (21%). Of the total pupae identified 84.3% and 79.3% of A. aegypti and A. albopictus respectively were collected in small receptacles: bottles, plants vase, tires, bromeliads and tree holes. These productivities are not supported by literature and can be explained by the restrictions of access for the bigger receptacles and lack of training of the agents. The study points out the importance which the small receptacles can have on vector densities in urban environment despite of their productivity and conclude that the entomology surveillance methodology for dengue used in PDCB has no efficacy to identify the bigger and more productive receptacles. This conclusion suggests that this inefficacy can be an important factor for the failures on dengue vector control in Brazil.


EcoHealth ◽  
2010 ◽  
Vol 7 (1) ◽  
pp. 78-90 ◽  
Author(s):  
H. Padmanabha ◽  
E. Soto ◽  
M. Mosquera ◽  
C. C. Lord ◽  
L. P. Lounibos

2016 ◽  
Vol 9 (1) ◽  
Author(s):  
Regan Deming ◽  
Pablo Manrique-Saide ◽  
Anuar Medina Barreiro ◽  
Edgar Ulises Koyoc Cardeña ◽  
Azael Che-Mendoza ◽  
...  

2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistancein several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.


2021 ◽  
Vol 15 (2) ◽  
pp. e0008492 ◽  
Author(s):  
Rafi Ur Rahman ◽  
Luciano Veiga Cosme ◽  
Monique Melo Costa ◽  
Luana Carrara ◽  
José Bento Pereira Lima ◽  
...  

Vector control largely relies on neurotoxic chemicals, and insecticide resistance (IR) directly threatens their effectiveness. In some cases, specific alleles cause IR, and knowledge of the genetic diversity and gene flow among mosquito populations is crucial to track their arrival, rise, and spread. Here we evaluated Aedes aegypti populations’ susceptibility status, collected in 2016 from six different municipalities of Rio de Janeiro state (RJ), to temephos, pyriproxyfen, malathion, and deltamethrin. We collected eggs of Ae. aegypti in Campos dos Goytacazes (Cgy), Itaperuna (Ipn), Iguaba Grande (Igg), Itaboraí (Ibr), Mangaratiba (Mgr), and Vassouras (Vsr). We followed the World Health Organization (WHO) guidelines and investigated the degree of susceptibility/resistance of mosquitoes to these insecticides. We used the Rockefeller strain as a susceptible positive control. We genotyped the V1016I and F1534C knockdown resistance (kdr) alleles using qPCR TaqMan SNP genotyping assay. Besides, with the use of Ae. aegypti SNP-chip, we performed genomic population analyses by genotyping more than 15,000 biallelic SNPs in mosquitoes from each population. We added previous data from populations from other countries to evaluate the ancestry of RJ populations. All RJ Ae. aegypti populations were susceptible to pyriproxyfen and malathion and highly resistant to deltamethrin. The resistance ratios for temephos was below 3,0 in Cgy, Ibr, and Igg populations, representing the lowest rates since IR monitoring started in this Brazilian region. We found the kdr alleles in high frequencies in all populations, partially justifying the observed resistance to pyrethroid. Population genetics analysis showed that Ae. aegypti revealed potential higher migration among some RJ localities and low genetic structure for most of them. Future population genetic studies, together with IR data in Ae aegypti on a broader scale, can help us predict the gene flow within and among the Brazilian States, allowing us to track the dynamics of arrival and changes in the frequency of IR alleles, and providing critical information to improving vector control program.


2019 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract BackgroundThe development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti, an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively.MethodsWe used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. ResultsThe scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of resistance in several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of insecticide resistance frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns in resistance observed.ConclusionsThe genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence the outcome of resistance.


2020 ◽  
Author(s):  
Stephanie Jane Mundis ◽  
Alden S. Estep ◽  
Christy M. Waits ◽  
Sadie J. Ryan

Abstract Background The development of insecticide resistance in disease-vectoring mosquito species can lead to vector control failure and disease resurgence. However, insecticide applications remain an essential public health intervention. In Florida, insecticide resistance in Aedes aegypti , an anthropophilic mosquito species capable of transmitting dengue, chikungunya, and Zika virus, is a major concern. Understanding the location, scale, and driving factors of insecticide resistance can enhance the ability of vector control organizations to target populations effectively. Methods We used previously collected data on frequencies of mutations that confer resistance to commonly used pyrethroid insecticides in Aedes aegypti specimens from 62 sites distributed across 18 counties in Florida. To determine the scale of clustering for the most resistant variant, we used a Ripley’s K function. We also used a spatial scanning statistic technique to identify the locations of clusters where higher than expected frequencies of susceptible or resistant mosquitoes occurred. We then tested for associations between landscape, demographic, and insecticide-use factors using a beta regression modelling approach and evaluated the effect of spatial lag and spatial error terms on overall explanatory power of these models. Results The scale at which maximum clustering of the most resistant variant occurs is approximately 20 kilometers. We identified statistically significant clusters of genotypes associated with resistancein several coastal cities, although some of these clusters were near significant clusters of susceptible mosquitoes, indicating selection pressures vary at the local scale. Vegetation density, distance from roads, and pyrethroid-use by vector control districts were consistently significant predictors of knockdown resistance genotype frequency in the top-performing beta regression models, although pyrethroid-use surprisingly had a negatively associated with resistance. The incorporation of spatial lags resulted in improvements to the fit and explanatory power of the models, indicating an underlying diffusion process likely explains some of the spatial patterns observed. Conclusions The genetic mutations that confer resistance to pyrethroids in Aedes aegpyti mosquitoes in Florida exhibit spatial autocorrelation and patterns that can be partially explained by landscape and insecticide-use factors. Further work at local scales should be able to identify the mechanisms by which these variables influence selection for alleles associated with resistance.


Sign in / Sign up

Export Citation Format

Share Document