scholarly journals Three-Dimensional Traction Force Microscopy: A New Tool for Quantifying Cell-Matrix Interactions

PLoS ONE ◽  
2011 ◽  
Vol 6 (3) ◽  
pp. e17833 ◽  
Author(s):  
Christian Franck ◽  
Stacey A. Maskarinec ◽  
David A. Tirrell ◽  
Guruswami Ravichandran
Author(s):  
Jonas F. Eichinger ◽  
Maximilian J. Grill ◽  
Iman Davoodi Kermani ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractLiving soft tissues appear to promote the development and maintenance of a preferred mechanical state within a defined tolerance around a so-called set point. This phenomenon is often referred to as mechanical homeostasis. In contradiction to the prominent role of mechanical homeostasis in various (patho)physiological processes, its underlying micromechanical mechanisms acting on the level of individual cells and fibers remain poorly understood, especially how these mechanisms on the microscale lead to what we macroscopically call mechanical homeostasis. Here, we present a novel computational framework based on the finite element method that is constructed bottom up, that is, it models key mechanobiological mechanisms such as actin cytoskeleton contraction and molecular clutch behavior of individual cells interacting with a reconstructed three-dimensional extracellular fiber matrix. The framework reproduces many experimental observations regarding mechanical homeostasis on short time scales (hours), in which the deposition and degradation of extracellular matrix can largely be neglected. This model can serve as a systematic tool for future in silico studies of the origin of the numerous still unexplained experimental observations about mechanical homeostasis.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Lauren Hazlett ◽  
Alexander K. Landauer ◽  
Mohak Patel ◽  
Hadley A. Witt ◽  
Jin Yang ◽  
...  

Abstract We introduce a novel method to compute three-dimensional (3D) displacements and both in-plane and out-of-plane tractions on nominally planar transparent materials using standard epifluorescence microscopy. Despite the importance of out-of-plane components to fully understanding cell behavior, epifluorescence images are generally not used for 3D traction force microscopy (TFM) experiments due to limitations in spatial resolution and measuring out-of-plane motion. To extend an epifluorescence-based technique to 3D, we employ a topology-based single particle tracking algorithm to reconstruct high spatial-frequency 3D motion fields from densely seeded single-particle layer images. Using an open-source finite element (FE) based solver, we then compute the 3D full-field stress and strain and surface traction fields. We demonstrate this technique by measuring tractions generated by both single human neutrophils and multicellular monolayers of Madin–Darby canine kidney cells, highlighting its acuity in reconstructing both individual and collective cellular tractions. In summary, this represents a new, easily accessible method for calculating fully three-dimensional displacement and 3D surface tractions at high spatial frequency from epifluorescence images. We released and support the complete technique as a free and open-source code package.


2012 ◽  
Vol 4 ◽  
pp. 144-150 ◽  
Author(s):  
J. Notbohm ◽  
J.-H. Kim ◽  
C. Franck ◽  
S. Maskarinec ◽  
D. Tirrell ◽  
...  

2019 ◽  
Vol 25 (3) ◽  
pp. 753-761 ◽  
Author(s):  
Warren Colomb ◽  
Matthew Osmond ◽  
Charles Durfee ◽  
Melissa D. Krebs ◽  
Susanta K. Sarkar

AbstractThe absence of quantitative in vitro cell–extracellular matrix models represents an important bottleneck for basic research and human health. Randomness of cellular distributions provides an opportunity for the development of a quantitative in vitro model. However, quantification of the randomness of random cell distributions is still lacking. In this paper, we have imaged cellular distributions in an alginate matrix using a multiview light sheet microscope and developed quantification metrics of randomness by modeling it as a Poisson process, a process that has constant probability of occurring in space or time. We imaged fluorescently labeled human mesenchymal stem cells embedded in an alginate matrix of thickness greater than 5 mm with $\sim\! {\rm 2}{\rm. 9} \pm {\rm 0}{\rm. 4}\,\mu {\rm m}$ axial resolution, the mean full width at half maximum of the axial intensity profiles of fluorescent particles. Simulated randomness agrees well with the experiments. Quantification of distributions and validation by simulations will enable quantitative study of cell–matrix interactions in tissue models.


2011 ◽  
Vol 70 ◽  
pp. 21-27 ◽  
Author(s):  
Jacob Notbohm ◽  
Jin Hong Kim ◽  
Anand Asthagiri ◽  
Guruswami Ravichandran

With increasing understanding of the important role mechanics plays in cell behavior, the experimental technique of traction force microscopy has grown in popularity over the past decade. While researchers have assumed that cells on a flat substrate apply tractions in only two dimensions, a finite element simulation is discussed here that demonstrates how cells apply tractions in all three dimensions. Three dimensional traction force microscopy is then used to experimentally confirm the finite element results. Finally, the implications that the traction distributions of cell clusters have on the study of inhibition of proliferation due to cell contact and scattering of cells in a cluster are discussed.


2005 ◽  
Vol 16 (11) ◽  
pp. 5070-5076 ◽  
Author(s):  
Hongmei Jiang ◽  
Frederick Grinnell

Fibroblast-3D collagen matrix culture provides a physiologically relevant model to study cell–matrix interactions. In tissues, fibroblasts are phagocytic cells, and in culture, they have been shown to ingest both fibronectin and collagen-coated latex particles. Compared with cells on collagen-coated coverslips, phagocytosis of fibronectin-coated beads by fibroblasts in collagen matrices was found to be reduced. This decrease could not be explained by integrin reorganization, tight binding of fibronectin beads to the collagen matrix, or differences in overall bead binding to the cells. Rather, entanglement of cellular dendritic extensions with collagen fibrils seemed to interfere with the ability of the extensions to interact with the beads. Moreover, once these extensions became entangled in the matrix, cells developed an integrin-independent component of adhesion. We suggest that cell–matrix entanglement represents a novel mechanism of cell anchorage that uniquely depends on the three-dimensional character of the matrix.


PLoS ONE ◽  
2013 ◽  
Vol 8 (9) ◽  
pp. e69850 ◽  
Author(s):  
Juan C. del Álamo ◽  
Ruedi Meili ◽  
Begoña Álvarez-González ◽  
Baldomero Alonso-Latorre ◽  
Effie Bastounis ◽  
...  

2014 ◽  
Vol 35 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
D. Herrmann ◽  
J. R. W. Conway ◽  
C. Vennin ◽  
A. Magenau ◽  
W. E. Hughes ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document