Spinoff Challenges for Computational Fluid Dynamics

2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Francis H. Harlow

This paper describes extensions of computational fluid dynamics (CFD) to fields of analysis lying well beyond their current realms of application. In particular, three examples are presented. The first is to the collective behavior of mobs of people interacting with sources of danger and/or opportunity to which each individual responds by actions that depend strongly on the inducement of fear and/or excitement, depending on the intrinsic susceptibilities of the person. This behavior results in both individual activities (agent-based) and collective behaviors (crowd-based stochastic) with consequences of potentially great significance. Extensions are also described for which various other emotional developments are important to the behavior of a mob. The second example is to the processes of biological evolution, in particular to the driving forces that influence the directions of species alterations through a succession of characteristics that are tested for survivability in classical Darwinian fashion. The key to the analysis lies in the newly emerging field of epigenetics, in which numerous important experimental studies are producing astonishing results leading to major challenges to the creation of computational models of the collective fluid-like dynamics of interacting biological species. The third example explores an alternative to the Big Bang theory for describing the origin of our universe. The idea is that a parent universe exists, being composed of energy, matter, and antimatter in various forms. In some region a perturbation occurs, which locally has an excess of matter over antimatter. An enormous gravitational buildup of matter and energy in the region leads to a black hole, in which there is distortion in the fourth dimension. The result then leads to an offspring entity (universe) that becomes completely detached from the parent. To apply computational fluid dynamics to the analysis of this process requires formulations that include a major component of relevant physical representations. In all three of these examples, instabilities, fluctuations, and turbulence play major roles. These arise naturally in agent-based numerical formulations (the first and second of our examples), but are much more challenging to describe in a stochastic representation (e.g., the Navier–Stokes equations). Some promising spectral analysis extensions for stochastic formulations are included in this paper.

2005 ◽  
Author(s):  
Vincent G. Chapin ◽  
Romaric Neyhousser ◽  
Stephane Jamme ◽  
Guillaume Dulliand ◽  
Patrick Chassaing

In this paper we propose a rational viscous Computational Fluid Dynamics (CFD) methodology applied to sailing yacht rig aerodynamic design and analysis. After an outlook of present challenges in high speed sailing, we emphasized the necessity of innovation and CFD to conceive, validate and optimize new aero-hydrodynamic concepts. Then, we present our CFD methodology through CAD, mesh generation, numerical and physical modelling choices, and their validation on typical rig configurations through wind-tunnel test comparisons. The methodology defined, we illustrate the relevance and wide potential of advanced numerical tools to investigate sailing yacht rig design questions like the relation between sail camber, propulsive force and aerodynamic finesse, and like the mast-mainsail non linear interaction. Through these examples, it is shown how sailing yacht rig improvements may be drawn by using viscous CFD based on Reynolds Averaged Navier-Stokes equations (RANS). Then the extensive use of viscous CFD, rather than wind-tunnel tests on scale models, for the evaluation or ranking of improved designs with increased time savings. Viscous CFD methodology is used on a preliminary study of the complex and largely unknown Yves Parlier Hydraplaneur double rig. We show how it is possible to increase our understanding of his flow physics with strong sail interactions, and we hope this methodology will open new roads toward optimized design. Throughout the paper, the necessary comparison between CFD and wind-tunnel test will be presented to focus on limitations and drawbacks of viscous CFD tools, and to address future improvements.


2018 ◽  
Vol 141 (6) ◽  
Author(s):  
Jiho You ◽  
Jinmo Lee ◽  
Seungpyo Hong ◽  
Donghyun You

A computational methodology, which combines a computational fluid dynamics (CFD) technique and a computational structural dynamics (CSD) technique, is employed to design a deformable foil whose kinematics is inspired by the propulsive motion of the fin or the tail of a fish or a cetacean. The unsteady incompressible Navier–Stokes equations are solved using a second-order accurate finite difference method and an immersed-boundary method to effectively impose boundary conditions on complex moving boundaries. A finite element-based structural dynamics solver is employed to compute the deformation of the foil due to interaction with fluid. The integrated CFD–CSD simulation capability is coupled with a surrogate management framework (SMF) for nongradient-based multivariable optimization in order to optimize flapping kinematics and flexibility of the foil. The flapping kinematics is manipulated for a rigid nondeforming foil through the pitching amplitude and the phase angle between heaving and pitching motions. The flexibility is additionally controlled for a flexible deforming foil through the selection of material with a range of Young's modulus. A parametric analysis with respect to pitching amplitude, phase angle, and Young's modulus on propulsion efficiency is presented at Reynolds number of 1100 for the NACA 0012 airfoil.


2012 ◽  
Vol 184-185 ◽  
pp. 944-948 ◽  
Author(s):  
Hai Jun Gong ◽  
Yang Liu ◽  
Xue Yi Fan ◽  
Da Ming Xu

For a clear and comprehensive opinion on segregated SIMPLE algorithm in the area of computational fluid dynamics (CFD) during liquid processing of materials, the most significant developments on the SIMPLE algorithm and its variants are briefly reviewed. Subsequently, some important advances during last 30 years serving as increasing numerical accuracy, enhancing robustness and improving efficiency for Navier–Stokes (N-S) equations of incompressible fluid flow are summarized. And then a so-called Direct-SIMPLE scheme proposed by the authors of present paper introduced, which is different from SIMPLE-like schemes, no iterative computations are needed to achieve the final pressure and velocity corrections. Based on the facts cited in present paper, it conclude that the SIMPLE algorithm and its variants will continue to evolve aimed at convergence and accuracy of solution by improving and combining various methods with different grid techniques, and all the algorithms mentioned above will enjoy widespread use in the future.


Author(s):  
A. Batrakov ◽  
A. Kusyumov ◽  
S. Mikhailov ◽  
V. Pakhov ◽  
A. Sungatullin ◽  
...  

Author(s):  
Qing Tang ◽  
Michael Bockelie

This paper presents a condensed phase computational fluid dynamics (CFD) based tool for modeling the processes of melting, flow and gasification of thermoplastic materials exposed to a high heat flux. Potential applications of the tool include investigating the behavior of polymer materials commonly used in personal computers and computer monitors if exposed to an intense heat flux, such as occurs during a fire. The finite-volume based model uses a three-dimensional body-fitted time dependent grid formulation to solve the unsteady Navier Stokes equations. A multi-grid method is used to accelerate convergence at each time step. Sub-models are included to describe the temperature dependent viscosity relationship and in-depth gasification and absorption of thermoplastic materials, free surface flows and surface tension. A series of test cases have been performed and the model results are compared to experimental data to investigate the impacts of different sub-models, boundary conditions, material properties and problem configurations on the accuracy, efficiency and applicability of the modeling tool.


Author(s):  
John W Chew ◽  
Feng Gao ◽  
Donato M Palermo

This paper presents a review of research on turbine rim sealing with emphasis placed on the underlying flow physics and modelling capability. Rim seal flows play a crucial role in controlling engine disc temperatures but represent a loss from the main engine power cycle and are associated with spoiling losses in the turbine. Elementary models that rely on empirical validation and are currently used in design do not account for some of the known flow mechanisms, and prediction of sealing performance with computational fluid dynamics has proved challenging. Computational fluid dynamics and experimental studies have indicated important unsteady flow effects that explain some of the differences identified in comparing predicted and measure sealing effectiveness. This review reveals some consistency of investigations across a range of configurations, with inertial waves in the rotating flow apparently interacting with other flow mechanisms which include vane, blade and seal flow interactions; disc pumping and cavity flows; shear layer and other instabilities; and turbulent mixing.


2017 ◽  
Vol Vol 159 (A3) ◽  
Author(s):  
Y K Kim ◽  
E Y K Ng

Ship-to-bank interaction is a complex physical phenomenon that involves not only in the asymmetric pressure field near banks or channels but also shallow water effect. Traditionally many experimental studies were carried out in this field. As numerical method is getting popular, there were various computational approaches as well. In this study, flow around a container ship in confined water is investigated with the open source CFD (Computational Fluid Dynamics) toolbox, OpenFOAM. Computations with several bank arrangements and different settings are performed. The OpenFOAM results are also compared to experiment results for validation.


Author(s):  
Gonçalo Mendonça ◽  
Frederico Afonso ◽  
Fernando Lau

The need of the aerospace industry, at national or European level, of faster yet reliable computational fluid dynamics models is the main drive for the application of model reduction techniques. This need is linked to the time cost of high-fidelity models, rendering them inefficient for applications like multi-disciplinary optimization. With the goal of testing and applying model reduction to computational fluid dynamics models applicable to lifting surfaces, a bibliographical research covering reduction of nonlinear, dynamic, or steady models was conducted. This established the prevalence of projection and least mean squares methods, which rely on solutions of the original high-fidelity model and their proper orthogonal decomposition to work. Other complementary techniques such as adaptive sampling, greedy sampling, and hybrid models are also presented and discussed. These projection and least mean squares methods are then tested on simple and documented benchmarks to estimate the error and speed-up of the reduced order models thus generated. Dynamic, steady, nonlinear, and multiparametric problems were reduced, with the simplest version of these methods showing the most promise. These methods were later applied to single parameter problems, namely the lid-driven cavity with incompressible Navier–Stokes equations and varying Reynolds number, and the elliptic airfoil at varying angles of attack for compressible Euler flow. An analysis of the performance of these methods is given at the end of this article, highlighting the computational speed-up obtained with these techniques, and the challenges presented by multiparametric problems and problems showing point singularities in their domain.


Author(s):  
Han Li ◽  
Huhu Wang ◽  
Yassin A. Hassan ◽  
N. K. Anand

Two or multiple parallel jets are an important shear flow that widely existing in many industrial applications. The interaction between turbulence jets enables fast and thorough mixing of two fluids. The mixing feature of parallel jets has many engineering applications, such as, in Generation IV conceptual nuclear reactors, the coolants merge in upper or lower plenum after passing through the reactor core. While study of parallel jets mixing phenomenon, numerical experiments such as Computational Fluid Dynamics (CFD) simulations are extensively incorporated. Validation of varied turbulent models is of importance to make sure that the numerical results could be trusted and served as a guideline further design purpose. Many commercial CFD packages in the market such as FLUENT and Star CCM+ can provide the ability to simulate turbulent flow with predefined turbulence model, however, such commercial solvers may lack the flexibility that allow users build their own models for R&D purpose. The existing solvers in OpenFOAM are developed to fulfill both academic and industrial needs by achieving large-scale computational capability with a variety of physical models. Moreover, as an open source CFD toolbox, OpenFOAM grants users full control of the source code with complete freedom of customization. The purpose of this study is to perform CFD simulation using OpenFOAM for two submerged parallel jets issuing from two rectangular channels. Fully hexahedron multi-density mesh is generated using blockMesh utility to ensure velocity gradients are properly evaluated. A generalized-multi-grid solver is used to enhance convergence. Based on Reynolds-Averaged Navier-Stokes Equations (RANS), the realizable k-ε and k-ε shear stress transport (SST) are selected to model turbulent flow. Steady state Finite Volume solver simpleFoam is used to perform the simulation. In addition, data from experiments run in Thermal-Hydraulic Lab at Texas A&M University using particle image velocity (PIV) and Laser Doppler Anemometry (LDA) methods are considered in order to compare and validate simulation results. A number of turbulence characteristic such as mean velocities, turbulent intensities, z-component vorticity were compared with experiments. It was found that for stream-wise mean velocity profile as well as shear stresses, the realizable k-ε model exhibits a good agreement with experimental data. However, velocity fluctuation and turbulence intensities, simulation results showed a certain discrepancy.


Sign in / Sign up

Export Citation Format

Share Document