scholarly journals Joint Analysis for Genome-Wide Association Studies in Family-Based Designs

PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e21957 ◽  
Author(s):  
Qiuying Sha ◽  
Zhaogong Zhang ◽  
Shuanglin Zhang
2010 ◽  
Vol 25 (5) ◽  
pp. 307-309 ◽  
Author(s):  
J. Lasky-Su ◽  
C. Lange

AbstractThe etiology of suicide is complex in nature with both environmental and genetic causes that are extremely diverse. This extensive heterogeneity weakens the relationship between genotype and phenotype and as a result, we face many challenges when studying the genetic etiology of suicide. We are now in the midst of a genetics revolution, where genotyping costs are decreasing and genotyping speed is increasing at a fast rate, allowing genetic association studies to genotype thousands to millions of SNPs that cover the entire human genome. As such, genome-wide association studies (GWAS) are now the norm. In this article we address several statistical challenges that occur when studying the genetic etiology of suicidality in the age of the genetics revolution. These challenges include: (1) the large number of statistical tests; (2) complex phenotypes that are difficult to quantify; and (3) modest genetic effect sizes. We address these statistical issues in the context of family-based study designs. Specifically, we discuss several statistical extensions of family-based association tests (FBATs) that work to alleviate these challenges. As our intention is to describe how statistical methodology may work to identify disease variants for suicidality, we avoid the mathematical details of the methodologies presented.


2021 ◽  
Vol 89 (6) ◽  
Author(s):  
Dylan Duchen ◽  
Rashidul Haque ◽  
Laura Chen ◽  
Genevieve Wojcik ◽  
Poonum Korpe ◽  
...  

ABSTRACT Shigella is a leading cause of moderate-to-severe diarrhea globally and the causative agent of shigellosis and bacillary dysentery. Associated with 80 to 165 million cases of diarrhea and >13% of diarrheal deaths, in many regions, Shigella exposure is ubiquitous while infection is heterogenous. To characterize host-genetic susceptibility to Shigella-associated diarrhea, we performed two independent genome-wide association studies (GWAS) including Bangladeshi infants from the PROVIDE and CBC birth cohorts in Dhaka, Bangladesh. Cases were infants with Shigella-associated diarrhea (n = 143) and controls were infants with no Shigella-associated diarrhea in the first 13 months of life (n = 446). Shigella-associated diarrhea was identified via quantitative PCR (qPCR) threshold cycle (CT) distributions for the ipaH gene, carried by all four Shigella species and enteroinvasive Escherichia coli. Host GWAS were performed under an additive genetic model. A joint analysis identified protective loci on chromosomes 11 (rs582240, within the KRT18P59 pseudogene; P = 6.40 × 10−8; odds ratio [OR], 0.43) and 8 (rs12550437, within the lincRNA RP11-115J16.1; P = 1.49 × 10−7; OR, 0.48). Conditional analyses identified two previously suggestive loci, a protective locus on chromosome 7 (rs10266841, within the 3′ untranslated region [UTR] of CYTH3; Pconditional = 1.48 × 10−7; OR, 0.44) and a risk-associated locus on chromosome 10 (rs2801847, an intronic variant within MPP7; Pconditional = 8.37 × 10−8; OR, 5.51). These loci have all been indirectly linked to bacterial type 3 secretion system (T3SS) activity, its components, and bacterial effectors delivered into host cells. Host genetic factors that may affect bacterial T3SS activity and are associated with the host response to Shigella-associated diarrhea may provide insight into vaccine and drug development efforts for Shigella-associated diarrheal disease.


2011 ◽  
Vol 12 (7) ◽  
pp. 465-474 ◽  
Author(s):  
Jurg Ott ◽  
Yoichiro Kamatani ◽  
Mark Lathrop

Sign in / Sign up

Export Citation Format

Share Document